NanoSIMS mapping of 210RN and 226Ra in South Australian copper concentrates

M. ROLLOG1*, N.J. COOK1, P. GUAGLIARDO2, M.R. KILBURN2, K. EHRI3, C.L. CIOBANU1

1The University of Adelaide, Adelaide, SA 5005, Australia (*correspondence: mark.rolllog@adelaide.edu.au, (nigel.cook@adelaide.edu.au; cristiana.ciobanu@adelaide.edu)
2University of Western Australia, Perth, WA 6009, Australia (paul.guagliardo@uwa.edu.au, mattrkilburn@uwa.edu.au)
3BHP Billiton Olympic Dam, Adelaide, SA 5000, Australia (Kathy.J.Ehrig@bhpbilliton.com)

South Australian iron-oxide copper gold (IOCG) deposits contain uranium and its decay products. Efficient separation of radionuclides – specifically 210Pb and 210Po (hereafter 210RN) from copper sulphide concentrates has proven to be difficult due to poor constraints on their mineralogical deportment and behaviour throughout the metallurgical extraction process. To date, efforts to determine host mineralogy of these radioisotopes have been complicated by concentrations far below minimum detection limits of most instrumentation – on the order of parts per trillion to quadrillion.

We present here the first direct evidence for the location of 210RN and 226Ra within specific mineral grains, as imaged by the Cameca nanoSIMS 50L at the University of Western Australia. Compositional maps confirm, for example, the presence of 210RN in apatite (Fig. 1), brannerite, and uraninite, and of 226Ra in barite.

Figure 1: 210RN in zoned apatite from Olympic Dam. Green = Fe, blue = Ca, red/pink = 210RN.

Mapping individual grains via nanoSIMS unlocks the possibility of creating and validating a mineralogical budget for radionuclides in copper ores and their host minerals. This is a pre-requisite for developing methods to eliminate or reduce their abundance in copper concentrates.