Molecular simulation studies of H₂O-CO₂-CH₄ complex in swelling clays

QI RAO¹ AND YONGSHENG LENG¹

¹ Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, DC 20052, USA (leng@gwu.edu)

Shale gas production with water-based hydraulic fracturing may invoke high water consumption and formation damage. Carbon dioxide (CO_2) is a promising candidate for reservoir fracturing and enhanced oil-gas recovery (EOGR), plus benefit from long-term CO_2 sequestration. Swelling clays are important components of shales. Understanding the interaction between water–carbon dioxide–methane (CH_4) ternary mixture and swelling clays is important for CO_2 -EOGR and CO_2 sequestration in shale gas reservoirs.

In this study, we employ the grand-canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations to investigate a H₂O-CO₂-CH₄ ternary mixture in Namontmorillonite clay interlayer under geological conditions (T = 323 K, P = 90 bar) with relative humidity (RH) in the ranges of 5% - 40%. We studied the effects of RH on the intercalation of different species. The stable clay interlayer distances at different RH values are determined based on the calculated free energy curves of the clay-fluid compex system. Simulation results show that there are two stable hydration states: the monolayer (1W) H2O-CO2-CH4-Na complex with a basal spacing around 12 Å and a bilayer (2W) state with a basal spacing around 14.5 - 15.7 Å. In the range of RH investigated, the 1W state is more stable than the 2W state. Smilar to our early studies, CO₂ and CH₄ intercalation into the clay mineral is strongly influenced by RH. Our simulation results show that the intercalation of CH₄ is strongly outcompeted by CO₂ upon the hydration of interlayer sodium ions by water molecules. However, low RHs do provide opportunities for the co-sorption of CH₄ with CO₂. The competitive sorption between CO₂ and CH₄ in clay interlayers depends on the CO₂/CH₄ ratio in the ternary mixture. MD simulations show that CO₂ and CH₄ molecules are partially hydrated, especially at low RHs, while sodium ions are fully hydrated due to its large hydration energy with water molecules. Further, some CO₂ molecules can migrate into the first hydration shell of sodium ions at low RHs (< 20%). These findings provide better understanding of the behavior of H2O-CO2-CH4 ternary mixture in clay interlayers and demonstrate the potential implementation of CO2based EOGR in shale gas reservoirs.