Underground production of ⁸¹Kr detected in subsurface fluids

R. PURTSCHERT¹, T.C. ONSTOTT², W. JIANG^{3,8}, Z.-T. LU^{3,8}, P. MÜLLER³, J. ZAPPALA³ R. YOKOCHI⁴, E. VAN HEERDEN⁵, E. CASON⁵, M. LAU², T. KIEFT⁶, M.S. BRENNWALD⁷

¹ University of Bern, CH-3012 Bern, Switzerland

² Princeton University, Princeton, NJ 08544, USA

³ Argonne National Laboratory, Argonne, IL 60439, USA

⁴Department of the Geophysical Sciences, The University of Chicago

⁵Uni. of the Free State, Bloemfontein 9300, South Africa

⁶Department of Biology, New Mexico Institute of Mining and Technology, Socorro

⁷Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland

⁸The University of Science and Technology of China, Hefei

The potential of ⁸¹Kr for dating old groundwater has been demonstrated in an increasing number of studies [1,2]. In some cases the measured ⁸¹Kr concentrations were below detection limit [3] in agreement with the expectation that underground production of ⁸¹Kr by fission of ²³⁸U or ²³⁵U is very low because the nuclide is shielded by stable ⁸¹Br. Production by neutron capture by ⁸⁰Kr was estimated to be of similar and neglibile importance [5].

These theoretical estimates contrast with ⁸¹Kr/Kr ratios R [4] we observed in fracture waters of the Withwaters-rand and Ventersdorp Supergroups [4]. Three of four samples collected in deep gold and diamond mines showed significantly higher ratios than the atmospheric equilibrium value, Ra. In the Beatrix Mine a R/Ra value of 5 was measured in 2012 and confirmed in a completely independent duplicate measurement in 2016. One sample from the Transvaal dolomites, where the uranium concentrations are lower showed a R/Ra <1. Thus very high U and Th concentrations in the rock are certainly a prerequisite for this ingrowth of ⁸¹Kr in the subsurface but not sufficient if previously published fission yields and production scenarios are presented that may explain the observed high ⁸¹Kr values.

[1] Aggarwal et al (2015), Nature Geoscience, 8/1, 35-39 [2] Sturchio et al (2004), Geophysical Research Letters, 31/L05503, , [3] Gerber et al (2017), Geochimica et Cosmochimica Acta, 205, 187-210, [4] Onstott et al (2009), Geomicrobiology J. 26, 269. [5]. Lehmann et al (1993), WRR. 29, 2027.