Charaterizing the N isotopic compositions of ammonium and nitrate in PM_{2.5} in South Korea: seasonal perspective

KWANG-SU PARK, HYUK KIM, SEOK-MIN YU, SEAM NOH, KWANG-SEOL SEOK, YOUNG-HEE KIM

Chemicals Research Division, Environmental National Institue of Environmental Research (NIER), Incheon, 22689, Republic of Korea

We collected PM_{2.5} samples for analyzed $\delta^{13}C,\,\delta^{15}\text{N-TN},$ $\delta^{15} N\text{-}NO_3^-$ and $\delta^{15} N\text{-}NH_4^+$ isotope from a rural (Baengnyeong Island), an urban (Seoul) in Korea from 2014 to 2016. In Baengnyeong, δ^{13} C, δ^{15} N-TN, δ^{15} N-NO₃, and δ^{15} N-NH₄⁺ were $-22.6 \pm 0.9\%$, $8.5 \pm 5.2\%$, $11.7 \pm 2.7\%$, and $-5.5 \pm 4.6\%$, respectively in winter and $-24.3 \pm 0.7\%$, $0.6 \pm 4.0\%$, $0.8 \pm 1.9\%$, and $9.7 \pm 5.7\%$, respectively in summer, which showed significant seasonal differences with sinusoidal variation. In Seoul, the isotopic compositions were $-23.9 \pm 1.3\%$, $13.3 \pm 2.7\%$, $11.9 \pm 2.5\%$, and $14.1 \pm 1.0\%$ 4.6%, respectively in winter and -25.2 ± 0.5 %, $12.2 \pm$ 3.9%, $5.2 \pm 1.7\%$, and $14.2 \pm 4.8\%$, respectively in summer. The isotopic results implied that C, NO3-, and NH₄⁺ in PM_{2.5} from Baengnyeong were mostly originated from coal combustion during winter heating seasons; the island was heavily influenced by high PM2.5 pollution caused by China's winter heating. Whereas, the isotopic values implied that NO₃-, and NH₄+ in PM_{2.5} from Seoul were introduced mainly from local vehicle emissions, but during heating seasons, contributions from coal combustion are also important for NO₃⁻, but not for NH₄⁺. NH₃, the precursor of NH₄⁺ in PM_{2.5} in Seoul, is expected to originate mainly from vehicle emissions. The multi-isotope analysis of each component in PM2.5, demonstrated here, is identified as a promising tool for tracking the origins of atmospheric aerosols, which helps to develop effective PM_{2.5} control strategies implemented by the international organization in East Asian regions.