The moisture effect on 223Ra and 224Ra measurements using Mn-cartridges

MARIÉLE PAIVA¹ AND MICHEL RUTGERS VAN DER LOEFF²

¹Federal University of Rio Grande, Rio Grande, Brazil
²Alfred Wegener Institute, Bremerhaven, Germany

Important processes in the ocean can be evaluated with radioactive nuclides, including radium isotopes. An approach for quantifying radium isotopes in seawater with in-situ pumps has been developed in advance of the GEOTRACES program [1]. Precise measurements of 222Ra and 223Ra by means of the delayed coincidence counting system (RaDeCC) [2] are dependent on the moisture content of the medium [3]. In order to verify the optimum moisture content for this new approach, a set of measurements of Mn-cartridge standards under different moisture conditions was conducted, as this was done previously for the acrylic fibre. At a time, an amount of water equivalent to 5% of the cartridges weight was added, and the activities were determined.

![Figure 1. Count rates of 224Ra(a) and 223Ra(b) Mn-cartridge standards as a function moisture content.](image)

The variation of 223Ra activity occurs mainly between 0 to 15% of humidity. Under moisture conditions higher than 15%, the emanation efficiency reaches an optimum plateau until 100% of moisture. This result differs slightly from those found for 224Ra measurements using the acrylic fiber [3].

The 223Ra activity reaches the plateau under 5% of humidity, and above 50% of moisture the activity seems to decrease. Considering the counting error (7%), it is hard to state that the effect of the moisture is critical. However, this decrease can be related to the shorter half-life of the 219Rn compared to the time needed to its diffusion through the water film, which could be a reason for the frequently observed lower efficiency of the 223Ra channel.