Behavior of radiocesium at sedimentwater interface off Fukushima

S. Otosaka^{1*}, M. Fukuda² and T. Aono²

- ¹ Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan (*correspondence: otosaka.shigeyoshi@ jaea.go.jp)
- ² National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan

Within a year after the accident of Fukushima Daiichi Nuclear Power Plant (FDNPP) that occurred on March 11, 2011, 0.2 ± 0.05 PBq of ¹³⁷Cs was deposited onto the seabed. The concentration of ¹³⁷Cs in seabed sediment has also shown a decreasing trend, but the rate is slow relative to that in the seawater. Consequently, it is pointed out that the seafloor off Fukushima can continuously supply ¹³⁷Cs to the bottom waters and benthic foodweb. In this study, behavior of dissolved radiocesium near the seafloor is discussed from the distributions of ¹³⁷Cs in overlying water (seawater collected from ~30 cm above the seabed) at 14 stations and in pore water at three stations off Fukushima.

The ¹³⁷Cs concentrations in overlying water, collected during 2015 and 2016, ranged between 5 and 283 mBq/L, and increased in stations where higher ¹³⁷Cs concentrations were observed. Concentrations in overlying water were $2\sim3$ times higher than those in seawater collected from intermediate ($3\sim5$ m above the bottom) layers. Finally concentrations in pore water were $10\sim30$ times higher than those in overlying water.

Regardless of the pore size of the filter (0.45 μ m, 0.2 μ m and 1kDa) used for filtration, ¹³⁷Cs concentrations in overlying water were similar at each station. We can therefore consider that radiocesium is "dissolved" in the overlying water and has been diffused from the seabed through the porewater. Nevertheless, the effect of ¹³⁷Cs supply to the benthic environment is insignificant because estimated amount of ¹³⁷Cs transferred to benthic organisms does not lead to ¹³⁷Cs activities exceeding the regulation limits at most stations.

Apparent distribution coefficients (*K_d*) of 137 Cs between sediment and porewater were 140~350 L/kg, and fell within a certain range regardless of the concentration or penetration depth of 137 Cs in the sediment. This indicates that an equilibrium of the accident-derived 137 Cs has been approximately established in the sediment-porewater system.