Oxygen dynamics at sediment-water interface in continental slope, Northeast Japan

KAZUMASA OGURI¹, TAKASHI TOYOFUKU¹, HIDETAKA Nomaki¹, Christophe Fontanier², Hiroshi Kitazato³

¹Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061 Japan (*correspondence: ogurik@jamstec.go.jp)

²EPOC University of Bordeaux, Pessac, France

³Tokyo University of Marine Science and Technology, 4-5-7 Konan, Mihato-ku, Tokyo, 108-8477 Japan

Introduction

Oxygen is a key element to understand distributions of benthic organisms, microbial respiration and aerobic degradation of organic matter at and below the sediment–water interface (SWI). Northeast Japan is considered a high primary productivity area (400–1000 mgC m⁻² d⁻¹) [1], what induces a significant O₂ depletion (25–40 μ M) between 900 and 1100 m deep in the water column [2]. Nevertheless, few studies have been proceeded on biogeochemical cycles at sediment surface in this area.

Methods and results

On 2007, we obtained two dimensional O_2 profile at 975 m (41.00'N, 142.03'E) with an *in situ* planar O_2 optode. The instrument was designed in a previous study [3], and was deployed on the sea floor with a lander. The O_2 penetration depth by diffusion below the SWI was estimated to 3.5 mm. Furthermore, the O_2 distribution showed an obvious vertical heterogeneity, with enhanced penetration related to ophiuroid presence. In 2011, sediment cores were recovered at 1033 m (41.15'N, 142.00'E) close to the lander deployment site. O_2 profiles and diffusive uptakes ranged bewteen 3.9–5.8 mm. **Discussion**

Our results showed that O₂ penetration depth was close to the values obtained from 1450 m in Sagami Bay (East Japan) of 3.9 ± 1.5 mm [3], where the primary productivity is comparable (400 mgC m⁻² d⁻¹) [4] with our study area. Significant differences in terms of O₂ concentration in water (~50 μ M) [4], benthic habitats and communities were identified by ROV observation. They may explain different O₂ supply into the sediments.

 Ishizaka (1998) J. Oceanogr., 54, 553–564. [2] Fontanier et al. (2014) J. Foram. Res., 44, 281–299. [3] Glud et al. (2005) Deep-sea Res., 52, 1974–1987. [4] Kitazato et al. (2003) Prog. Oceanogr., 57, 3-16.