PATTERNS OF SECONDARY U IN OSTRICH EGGSHELL: APPLICATION TO U-TH DATING OF QUATERNARY TERRESTRIAL STRATA

ELIZABETH M. NIESPOLO,*1.2 WARREN D. SHARP,²
NICHOLAS FYLSTRA,² CHRISTIAN A. TRYON,³ DAVID G.
WEISZ,⁴ J. TYLER FAITH,⁵ CHRISTOPHER S.
HENSHILWOOD⁶, JASON LEWIS,⁷ ALEX MACKAY,⁸
TERESA STEELE,⁹ KAREN VAN NIEKERK⁶

¹UC Berkeley, Berkeley, CA
(*Correspondence: eniespolo@berkeley.edu)

²Berkeley Geochronology Center, Berkeley, CA

³Harvard University, Cambridge, MA

⁴Lawrence Livermore National Laboratory, Livermore, CA

⁵University of Queensland, Brisbane, QLD 4072, Australia

⁶University of Bergen, Norway

⁷Stony Brook University, Stony Brook, NY

⁸University of Wollongong, NSW 2522, Australia

Oliversity of Worldingong, NSW 2322, Australia

Outling late Quaternary terrestrial strata is especially challenging beyond the ~50 ka limit of ¹⁴C. Ostrich eggshell fragments (OES) are common in African archaeological

challenging beyond the ~50 ka limit of ¹⁴C. Ostrich eggshell fragments (OES) are common in African archaeological sequences, consist of ~2 mm-thick low-Mg calcite with 1-3% organics, and are resistant to diagenesis in semi-arid to arid soils over geologic timescales. OES are amenable to $\rm ^{14}C$ dating and are geochemically suitable for U-Th dating, though previous attempts neglected to account for secondary U derived from soil water upon burial. Recent work¹ has shown that U-Th "burial dates" on OES are concordant with ¹⁴C dates for ~10-50 ka OES from an African rockshelter. We present LA-ICP-MS profiles of U and ²³²Th for ancient OES from 8 archaeological sites in sub-Saharan Africa spanning ~10 to >500 ka. They reveal undesirable elevated detrital ²³²Th and erratic ²³⁸U near OES surfaces and in secondary calcite filling macroscopic pores, guiding optimal sampling for dating. Patterns of U and ²³²Th are similar in OES from all localities and do not vary systematically with age, suggesting U uptake is self-limiting and [U] is controlled by soil composition. All OES have steep smooth gradients of [238U] (~100s to 10s of ppb) starting at or near their outer surface, continuing through the "palisade layer", then dropping to near zero (primary) values, consistent with diffusive U uptake. SEM imaging and erfc⁻¹(U/U₀) v. distance plots indicate OES calcite structures control U diffusivity. OES >500 ka retain coherent U profiles, suggesting that U-Th burial dating of OES may be useful to the limit of secular equilibrium.

_

¹ Sharp et al., *U-Th dating of ostrich eggshell*: American Geophysical Union Fall Meeting 2015; in prep