New determination of ⁴⁰K decay constant: preliminary results

R. MERLE¹, K. KOSSERT² AND Y. AMELIN¹

¹Australian National University, <u>renaud.merle@anu.edu.au</u> ²Physikalisch-Technische Bundesanstalt, Germany.

Application of the 40 Ar/ 39 Ar isotopic geochronometer to dating rocks, minerals, fossils and meteorites is limited by insufficient precision and consistency in existing determinations of the half-life of its parent isotope 40 K. To constrain the half-life of 40 K, accurate and precise isotopic composition of K must be known.

We determined K isotopic composition in an enriched ⁴⁰K material that is used in liquid scintillation activity measurements for half-life determination. Isotopic ratios are determined using Total Evaporation TIMS [1] that involves the measurement of isotopic ratios with gradually increasing filament current from the first appearance of ion beam until complete exhaustion of the sample. Direct loading of 0.5 ng to 2 ng samples on outgassed filaments made of zone refined rhenium yielded low loading blanks, negligible Ca isobaric interference, and consistent fractionation patterns. The ⁴⁰K/³⁹K and ⁴¹K/³⁹K ratios were measured on a MAT261 TIMS by in static multicollector mode. Our enriched 40 K material yielded 40 K/ 39 K = 0.035252 ± 0.000021 and ${}^{41}K/{}^{39}K = 0.09645 \pm 0.00011$, corresponding the isotopic abundance of ⁴⁰K in our tracer of 40 K/K(atomic) = 0.031150 ± 0.000015 (1 σ).

A liquid scintillation counting experiment using this ⁴⁰K enriched material and its isotopic abundance determined by the total evaporation measurements yielded a preliminary ⁴⁰K half-life of 1.2469 x10⁹ years ($\pm 0.25\%$, 1 σ). This result is similar within uncertainty to those obtained by [2]. Further refinement of this value depends on precise determination of the ⁴⁰K decay branching ratio.

[1] Fiedler R. (1995) International Journal of Mass Spectrometry, 146-147, 91-97.

[2] Kossert K. and Günther E. (2004) *Applied Radiation and Isotopes*, 60, 459-464.