Effects of T, fO_2, and doping level on diffusion of HFSE in rutile

H.R. Marschall1, R. Dohmen2, T. Ludwig3

1Inst. Geowissensch., Goethe Universität Frankfurt, Germany
2Inst. Geol., Mineral. & Geophys., Ruhr-Universität Bochum
3Inst. Geowissensch., Universität Heidelberg, Germany

The mineral rutile is a common accessory phase in high-grade metamorphic rocks, and has gained increasing importance in the geosciences as a recorder of tectonic processes, as a single-mineral thermometer, a geochronometer, a geospeedometer, and as a provenance indicator. Apart from the growing interest of the geological community in rutile, there is an even greater demand by material scientists for quantitative data on trace-element incorporation (impurities and doping), defect structure, and diffusion in rutile.

We performed diffusion experiments using thin-film couples on synthetic rutile for Zr, Hf, Nb and Ta parallel to the a- and c-axes at temperatures between 800 and 1100 °C and a range of fO_2 between air and 10^{-13} Pa (i.e., log $fO_2 = IW – 3.5$). Diffusion couples were analysed using SIMS depth profiling [1].

Diffusion coefficients D for HFSE were found to be concentration dependent above a threshold of $\approx 1000 \mu g/g$, but not at lower concentrations. At constant fO_2, the temperature dependence of D follows an Arrhenius function in the temperature range investigated, and D decreases in the order $D_{Nb} \approx D_{Zr} \approx 2 D_{Hf} \approx 10 D_{Ta}$. This entails a strong diffusive fractionation of Nb/Ta consistent with earlier studies [1], but only a minor effect on Zr/Hf. A systematic dependence of diffusion of all four elements on fO_2 was found for low fO_2 (≤ FMQ), which is similar to that found for self diffusion of Ti. Our experimental results are in very good agreement with earlier radio-tracer experiments for Zr diffusion in rutile [2].

Equilibrium concentrations of the relevant point defects calculated based on available thermodynamic data reproduce the observed effects of fO_2 and heterovalent substitutions such as Nb$^{5+}$ on the Ti site for the diffusion of HFSE. We illustrate that above a critical concentration (depending on T and fO_2) the respective diffusion coefficient is strongly reduced. The effect of fO_2, as well as the doping effect of Nb may, at least in part, explain the apparent discrepancies between this data set (together with [2]) and that of [3].