Systematic variations in U isotope ratios of sediments from reactive transport of U

ANIRBAN BASU^{1,2}, SHAUN T. BROWN^{2,3}, GARETH LAW⁴, DONALD J. DEPAOLO^{2,3}

¹Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX

²Department of Earth and Planetary Science, UC Berkeley, Berkeley, CA 94720

³Energy Geosciences Divison, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Anirban.Basu@rhul.ac.uk

⁴The Centre for Radiochemsity Research, The University of Manchester, UK, M13 9PL

U isotope ratios are being developed as reliable indicators of redox reactions in the environment with increasing applications in palaeo-redox studies, contaminant transport and remediation monitoring. The environmental redox chemistry controls U mobility, and reactions that immobilize U are closely linked to the distribution of microbial and abiotic reductants in the subsurface. Therefore, understanding and quantifying the reactions using U isotope ratios in relation to the reactive transport of U in groundwater has major implications for the environment and energy.

Here, we present a combined U isotope approach using redox-sensitive $\delta^{238}U$ and and non-redox $(^{234}U/^{238}U)$ of mineralized sediments for detection and characterization of hydrological influence on U isotopic distribution. The U mineralized sediments are collected from the Needle's Eye natural analogue site in Scotland, UK. The overall variation in δ^{238} U of U minerals ranges from -0.35% to -1.04% in the top 35 cm of the sediment core while $(^{234}U/^{238}U)$ varies from 0.96 to 1.01. Our results reveal a systematic inverse relationship between $(^{234}U/^{238}U)$ and $\delta^{238}U$ in the sediments; the samples with low δ^{238} U exhibits high (234 U/ 238 U), particularly at high U concentration (>500 ppm). The systematic relationship between $(^{234}U/^{238}U)$ and $\delta^{238}U$ in sediments from Needle's Eye site closely resembles the isotopic signature $((^{234}\mathrm{U}/^{238}\mathrm{U})$ and $\delta^{238}\text{U})$ of a roll-front U deposit from Smith Ranch Highland, WY, USA, suggesting that the reactive trasnport of U influencing both isotope ratios. The reductive immobilization of U at redox boundaries sets the δ^{238} U and $(^{234}U/^{238}U)$ in sediments while α recoil and preferential leaching of 234U during dissolution tend to decrease the (²³⁴U/²³⁸U) of U minerals. Therefore, the continuous recycling of U across the redox boundary may give rise to the observed patterns. Future work will develop a quantitative model of U isotopic distribution of U minerals across redox boundaries.