Are dry primitive arc basalts reduced or oxidized? Insights from Galunggung Volcano, Indonesia

GUIL MALLMANN¹ & HUGH ST.C. O'NEILL¹

¹Research School of Earth Sciences, Australian National University, Canberra ACT 2601, Australia (guil.mallmann@anu.edu.au, hugh.oneill@anu.edu.au)

Normally, primitive island arc (subduction zone) basalts are both more oxidized and water rich than ocean floor basalts. But although Fe^{3+}/Fe^{2+} ratios of terrestrial basaltic glasses (a proxy for a magma's oxidation state) correlate positively with their H₂O contents [1], attributing the more oxidized nature of arc magmas directly to the presence of water in the mantle source region is not straightforward [2].

The Galunggung Volcano in Indonesia is unusual amongst arc volcanoes due to eruption of MgO-rich basaltic magma with very low water contents. Olivine-hosted melt inclusions from primitive basalts typically contain less than 0.4 wt.% H₂O [3]. In order to assess weather these dry arc basaltic magmas are reduced or oxidized, we have analysed the major- and trace-element concentrations of phenocryst phases (olivine, clinopyroxene and plagioclase) and mesostasis of several basaltic bombs from the 1982-1983 eruption, including redox-sensitive elements.

The mesostasis composition of samples studied so far range from ~7 to 4 wt.% MgO. Olivine phenocrysts are normally zoned, ranging from F090 to F070. All samples contain large proportions of phenocrysts (typically 20-40 vol.%) relative to mesostasis. Relative oxygen fugacities, calculated using the V olivine/liquid oxybarometer [4], range from ~ 1 to 3 log units more oxidized than the quartzmagnetite-fayalite (QFM) buffer, and correlate negatively with MgO in the mesostasis. All samples analysed to date are more oxidized than ocean floor basalts (which average at \sim QFM). Thus, unless most of the initial water of Galunggung primary magmas was lost during the low-pressure and/or eruptive stages of magmatic evolution, which appears not to be the case based on the preservation of CO₂ in melt inclusions [3], the oxidized nature of Galunggung primary magmas is not directly related to water in the mantle source.

Kelley & Cottrell (2009) Science 325, 605-607. [2] Frost
& Ballhaus (1998) Geochim. Cosmochim. Acta 62, 329-331.
Sisson & Bronto (1998) Nature 391, 883-886. [4]
Mallmann & O'Neill (2013) J. Petrol. 54, 933-949.