Mobility of ¹³⁷Cs in freshwater system using Mass Balance and Diffusion Studies

M. BASKARAN^{1*}, J. WANG² and J. NIEDERMILLER¹

 ¹Department of Geology, Wayne State University, Detroit, MI-48202, USA (correspondence: Baskaran@wayne.edu)
²SKLEC, East China Normal University, Shanghai 200062, P. R. China (wrui2007@163.com)
³Department of Geology, Wayne State University, Detroit, MI-48202, USA (az7084@wayne.edu)

Introduction

Cesium-137 is one of the most-widely used tracers for soil erosion and sedimentation studies. Its strikingly contrasting geochemical behaviour in fresh and salt water is of fundamental importance for its effective use as tracer and chronometer. Activity of ¹³⁷Cs in recent sedimentary record provides two globally-observed time markers (1963-peak & 1952-first appearance). To understand the factors that cause ¹³⁷Cs mobility in sediment porewater, a series of laboratory experiments were conducted to investigate its diffusion under different chemical conditions (oxic/anoxic and soft/hard water) in conjunction with a mass balance study in a lake in SE Michigan, USA.

Discussion of Results

We report the following: i) the fraction of ¹³⁷Cs desorbed from solid to liquid was the highest in oxic soft water (SW) compared to oxic hard water (HW), with the sequence: anoxic SW > oxic SW > anoxic HW > oxic HW, implying that chemistry of the porewater has direct bearing on ¹³⁷Cs diffusion.; ii) the fraction of anoxic sediment-sorbed ¹³⁷Cs exchanged with water containing a suite of ions follows the order: NH₄⁺ > Mn²⁺ > K⁺ > Mg²⁺ \approx Ca²⁺ > Na⁺ > Sr²⁺; iii) the diffusion flux of ¹³⁷Cs is \sim 8% of the total input flux to Lake St. Clair; and iv) The variations in partitioning of ¹³⁷Cs between solid and liquid phases is a function of water chemistry. A synthesis of reported ¹³⁷Cs diffusion and its implication to soil erosion studies will be presented.