THE CARBON ISOTOPE COMPOSITION OF THE SUN

J. R. LYONS¹, E. GHARIB-NEZHAD², T. R. AYRES³

¹School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA; jimlyons@asu.edu
²School of Molecular Sciences, Arizona State University,

Tempe, AZ 85287, USA; egharibn@asu.edu

³Center for Astrophysics, University of Colorado, Boulder, CO 80309, USA; thomas.ayres@colorado.edu

Introduction: The NASA *Genesis* mission succeeded in measuring O and N isotope ratios in returned solar wind samples [1], [2], but has not yet reported a C isotope ratio. Here we reanalyze solar photosphere spectral data to determine the C isotope ratio of the sun.

Spectroscopy of the photosphere: CO rovibrational transitions dominate the 2-5 micron spectral window of the photosphere. Shuttle-borne ATMOS FTS data contains thousands of CO fundamental and first-overtone lines, recorded at high signal-to-noise ratio and at high spectral resolution [3], [4]. We used the latest CO dipole moment functions [5] to reduce line strength uncertainties.

Results: Our ¹⁸O abundance for the temperatureenhanced photosphere is $\delta^{18}O_{SMOW} = -50 \pm 11\%$, which is the same within errors as the inferred ratio from *Genesis* [1]. Our ¹⁷O value is $\delta^{17}O_{SMOW} = -65 \pm 33\%$, which cannot distinguish between the *Genesis* photosphere value and a terrestrial value at the 2- σ level. We find the photosphere has $\delta^{13}C_{PDB} = -48 \pm 7\%$. Earth mantle carbon is believed to have a mean $\delta^{13}C = -5\%$ [6], implying that bulk terrestrial C is enriched in ¹³C relative to the Sun by nearly as much as bulk terrestrial O is enriched in ¹⁸O. Our results confirm measurements of solar wind in lunar regolith grains [7], and disagree with TiC data from CAIs in the Isheyevo meteorite which have $\delta^{13}C \sim 0\%$ [8].

Implications: Our results demonstrate that bulk Earth, Mars, and asteroids, are enriched in 13 C relative to the starting material that formed the solar system. Possible enrichment scenarios, including CO self-shielding in the nebula [9], and inheritance of 13 C-rich grains, will be discussed.

References: [1] McKeegan K. D. *et al.* (2011) *Science, 332*, 1528–1532. [2] Marty B. et al., (2011) *Science, 332*, 1533–1536 (2011). [3] Abrams M. C. et al. (1996) *Appl. Opt., 35*, 2747–2751. [4] Ayres T. R. et al. (2013) *Astrophys. J., 765,* 46–71. [5] Li G. *et al.* (2015) *Astrophys. J. Suppl. Ser., 216,* 15–32. [6] Deines P. (2002) *Earth Sci. Rev., 58,* 247-278. [7] Hashizume K. *et al.* (2004) *Astrophys. J., 600,* 480-484. [8] Meibom A. *et al.* (2007) *Astrophys., 656,* L33-L36. [9] Clayton R. N. (2002) *Nature, 415,* 860–861.