A XANES studies of the iron oxidation state in upper mantle spinel

R.A. Lukmanov 1* , A.G. Goncharov 1 , H. Kagi 2 , H. Ishibashi 3

- ¹ Saint-Petersburg State University, St. Petersburg, Russia (*correspondence: rustamlukmanov@gmail.com)
- ² University of Tokyo, Tokyo, Japan
- ³ Shizuoka University, Shizuoka, Japan

The oxygen fugacity (fO_2) is a significant parameter which has a major effect on the evolution of Earth's crust and mantle. Spinel as a host mineral for ferric iron could be a proxy for determination of the oxygen fugacity through Fe³⁺/ Σ Fe ratio.

We prepared 5 natural spinel samples from upper mantle xenoliths and obtain XANES, Mössbauer and EPMA data on two different grains on each sample. Calculation of $Fe^{3+}/\Sigma Fe$ was conducted through EPMA measurements (based on stoichiometry) and on Mossbauer data. For XANES spectra, after fitting was calculated integral intensity ratio $AFe^{3+}/A\Sigma Fe$.

Fe-K XANES spectra show systematic differences in the pre-edge region as a function of the shape of iron K-edge peak from iron oxidation state, as was previously shown for garnet [1], [2]. In addition, the main peak shift to lower energy noticed - in Cr-rich grains (44 and 95) with highest differences in AFe³⁺/ Σ AFe in comparison to Mössbauer and EPMA data. Noteworthy moment is that heterogeneity of spinel grains in Fe³⁺/ Σ Fe is far larger than expected. A more detailed analysis of the issue requires further studies from rim to core on shynthetic and natural samples.

Figure 1. a) Fe-K pre-edge peak for natural spinel samples with out of scale illustration of systematic differences in the shape of peak from iron oxidation state; b) Mössbauer plotted versus Mössbauer (1:1), XANES AFe3+/ Σ AFe plotted versus Mössbauer (XANES);

[1] Berry et al, (2010) Chemical Geology 278, 31–37. [2] Yaxley et al, (2012) Lithos 140, 142-151