Please ensure that your abstract fits into one column on one page and complies with the *Instructions to Authors* available from the Abstract Submission web page.

Carbon and nitrogen isotope compositons of organic fertilizers reveal contribution of nitrogen source in tributary

Bo-Ra Lim¹, Min-Seob Kim¹, Hong-Duck Ryu², Suk-Hee Yeon¹, Hyen-Mi Chung³, Jong-Woo Choi^{1*}

¹Environmental Measurement&Analysis Center, NIER, Incheon 22689, Rep. of Korea,

²Water Pollution Load Management Research Division, NIER, Incheon 22689, Rep. of Korea,

³Fundamental Environment Research Department, NIER, Incheon 22689, Rep. of Korea,

> icecream27@korea.kr, candyfrog77@gmail.com, nanumenv@korea.kr, yoonsh@korea.kr, hyenmic@korea.kr, ciw111@korea.kr,

We investigated the distribution of nitrogen compounds in tributary through results of multiple stable isotopes values(δ^{13} C, δ^{15} N, δ^{15} N-NH₄, δ^{15} N-NO₃ and δ^{18} O-NO₃) for water and various kinds of fertilizers during March to November. The δ^{15} N-NH₄ and δ^{15} N-NO₃ values in tributary during March to May showed ranging from 2.3 to 32.5 ‰, from -2.1 to 7.9 ‰, respectively. While tributary are highly infuenced by the nitrogen source from pigs and cattle breeding sites during July to November, due to observed the significantly enriched values in both $\delta^{15}N\text{-NH}_4$ and $\delta^{15}N\text{-NO}_3$, ranged from 1.2 to 45.8 %, from 7.3 to 27.2 %, respectively. Thrity samples of synthetic fertilizer and twenty-five animal manures showed markedly different $\delta^{13}C$ values, ranged from -9.7 to -40.2 ‰ and enriched $\delta^{15}N$ values as expected, ranged from -1.9 to 19.6 %. These are prelimnary data of the isotopic composition of fertilizer in Korea. Therefore, a wider survey of fertilzers for organic-animal manures and organomineral synthetic fertilzer production is needs to elucidate the natural isotope variation. We calculated the contribution rate of NH₄ and NO₃ from various kinds of fertilizer source according to the results of stable isotope. The contribution rates of ¹⁵N-NH₄ and ¹⁵N-NO₃ from animal organic manures source were significant that ranged between 55 and 98%, while those of synthetic fertilizer as the primary material of organo-mineral fertilizer source were not significant ranging from 8 to 36%. With the modeling approach we found a high range in the estimate proportion of fertilizer N, indicating that the mixing models is good tool to reveal contribution of N source. However, we should be chosen carefully end-member values. Better characterization of tributary δ^{15} N-DIN by better measurements or a more detailed modeling approach will aid in understanding N-cycle dynamics in freshwater ecosystem.