Tracing the final collision of accretionary orogens: Terminal magmatic activities in the southern Central Asian Orogenic Belt (CAOB)

SHAN LI1,2,*, SUN-LIN CHUNG3,2, SIMON A. WILDE4, BOR-MING JAHN2, WEN-JIAO XIAO3, AND TAO WANG1

1Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
2Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan
3Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
4Department of Applied Geology, Curtin University, G.P.O. Box U1987, Perth, Western Australia 6845, Australia
5State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

The key to defining the termination and final collision of accretion in an accretionary orogen is to recognize the initial magmatic processes that are generated at the time of ocean closure. The first identification of Early-Middle Triassic granitoids with high Sr/Y affinity along the Solonker-Xar Moron-Central Jilin suture zone in the southern CAOB and their emplacement at 251-245 Ma, establish that the North China Craton collided with the South Mongolian terranes in the late Permian. This accompanied termination of accretionary orogenesis in this region. Their low MgO, Cr and Ni contents and variable whole-rock εNd(t) values (+5.8 to -5.3), together with the range in zircon εHf(t) (+15.6 to -9.8) and δ18O values (5.1 to 7.9 ‰), indicate an origin from partial melting of juvenile lower crustal rocks with some old components, including supracrustal recycling under garnet amphibolite facies conditions. Our data, along with available geological and geophysical evidence, lead us to propose a model of final oceanic contraction in the southern CAOB, resulting in sub-linear distribution of high Sr/Y melts along the resultant collision zone, thus defining the onset of post-accretionary processes in the southern CAOB. The identification of collision-related high Sr/Y granitoids from the southern CAOB not only reveal the magmatic process in response to the final episode of orogenic evolution in the CAOB accretionary collision zone, but also constrain how and when an archipelago-type accretionary orogen terminated. As such, this study provides a snapshot of the final fate of archipelago-type systems.