Tracing methane emissions from temperate wetlands

SABINE K. LENGERG *1,2, KATIE L. H. LIM13, EDWARD R. C. HORNIBROOK2, IAN D. BULL1, MICHAEL PEACOCK3, RICHARD P. EVERSHED13, RICHARD D. PANCOST13

1 Organic Geochemistry Unit, University of Bristol, UK. (*correspondence: sabine.lengger@bristol.ac.uk)
2 Biogeochemistry Research Centre, University of Plymouth, UK. 3 Bristol Biogeochemistry Research Centre, University of Bristol, UK. 4 The Open University, UK.

In wetlands, which account for ≈ 30% of global methane emissions, methane is produced by methanogenic microorganisms in an anaerobic environment below the water table, and is transported upwards. Tracing microbial processes in present and past wetlands in order to feed precise quantitative estimates into atmospheric models has remained a challenge for biogeochemists and microbiologists. As a result, methane emissions from wetland sources are still associated with relatively high uncertainty. However, the use of biomarker lipids for methanogens (archaeol) in combination with stable isotope probing experiments can offer solutions. Here, we present data from two natural wetlands with distinct methane dynamics (low emission, δ13CCH4 = -80 ‰, pH < 4.5, CO2/H2 vs high emission, δ13CCH4 = -60 ‰, pH > 4.5, acetoclastic). High methane fluxes with enriched δ13C in the acetoclastic setting can be linked to high relative amounts of archaeol, which was also 10‰ enriched compared to the CO2/H2 setting. This confirms that relative abundances and δ13C values of archaeal biomarker lipids can be powerful tools to trace the past methane cycle. Incubation experiments revealed enhanced methane production upon addition of 13C-acetate at the naturally CO2/H2 dominated setting, confirming that substrate availability is the most significant control on wetland methane emissions if the water table remains constant. Incubations with H13CO3- resulted in significantly lower methane production in both settings. Uptake of 13C into archaeol from 13C-acetate occurred at both settings, further strengthening the link between archaeol and acetoclastic methanogenesis. The incubation experiments strongly suggest that an increase in acetate availability due to enhanced primary production and enhanced microbial activity with increasing global temperatures will not only result in increased methane emissions from temperate and subboreal wetlands, but also in enriched δ13CCH4 for these emissions. This might need to be taken into account when revising global methane inventories in a warming world.