CO₂-infused groudnwater injection and leakage test using shallow-depth groundwater and gas monitoring network

SEONG-SUN LEE¹, JINJU YEO¹, SEONG-CHUN JUN² KANG-KUN LEE^{1*}

¹School of Earth and Environmental Sciences, Seoul National University, South Korea, <u>soon3311@snu.ac.kr</u>, <u>jinee19@snu.ac.kr</u>, <u>*kklee@snu.ac.kr</u> (*Correspondence)
²Geogreen 21 Co.Ltd., <u>sc-jun@daum.net</u>

Groundwater and gas monitoring networks considering hydrogeological characteristics were constructed to perform an artificial CO₂ injection and leakage test into a shallow aquifer system at EIT site, Eunseong, Korea. The main objective of CO2 release test is to understand the behavior of CO₂ plume and inert gas tracers (Kr, Ar, He, and SF6) in a shallow aquifer system including saturated zone and unsaturated zone. Samll amout of CO2-infused groundwater were (about 5,000 L) injected into a shallow aquifer. For the CO2-infused water injection, pre-pumped groundwater was mixed with CO₂ gas (through the gas dissolver) as well as multi-gas tracers (Kr, He, and SF₆). After injection period, about 2,500 L of chaser fluid, Ar-infused water, was immediately injected to push the CO2 plume out of the injection well. The real-time monitoring for leakage test had been performed during 4 month. Spatial and temporal trends of measured values for soil gas CO₂ and SF₆ at unsaturated zone, hydraulic parameters (pH and EC), TIC (total inorganic carbon), carbon isotope (δ^{13} C) and dissolved CO₂ and inert gas tracers at saturated zone were analyzed. Based on a timeconcentration data of gas tracers obtained from preliminary inter-well tracer test, gas solubility was determined as a major factor governing the phase partitioning of tracers. Among partitioning tracers, Kr was firstly reached at around monitoring wells and maintained a detectable concentration which was longer detection time than other gas tracers. In the main test, the effect of injection was faintly represented on tracer concentration, water-level, temperature, EC, and TIC data obtained from monitoring wells adjacent to injection well due to a small amount of injection. The radius of influence by injection test was estimated as about 3 m. It was supposed that injected CO₂ plume did not migrate far away from injection well. Results from monitoring data can be utilized for site assessment and operation of monitoring network at EIT site for next long-term CO2 injection experiment with increased injection volume.