Elemental mercury production in seawater by coastal bacterial assemblages

CHENG-SHIUAN LEE AND NICHOLAS S. FISHER¹

¹School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA. cheng-shiuan.lee@stonybrook.edu

Elemental mercury (Hg⁰) evasion from surface seawater plays a principal role in the marine mercury cycle. Hg⁰ production in seawater is mainly controlled by abiotic (photochemical) and biotic (microbial) processes. In this study, we established a method using the gamma-emitting radionuclide Hg-203 as a tracer to evaluate the transformation of Hg²⁺ and methylmercury (MeHg) to Hg⁰ in seawater by coastal bacterial assemblages. The method, which used traps containing gold-coated beads to capture Hg⁰ released into air from seawater, can provide rapid and reliable Hg⁰ measurements that avoid potential contamination. Several natural bacterial assemblages in surface seawater collected 8 km off Southampton, New York, were used in our experiments. These bacterioplankton were contained in seawater collected for years prior to our study and stored in the dark at 4°C. Remarkably, these bacteria were still able to rapidly produce Hg⁰ following picomolar additions of ²⁰³Hg²⁺ or Me²⁰³Hg when brought up to 23°C in 2 days. Our results show that Hg⁰ production rates were independent of dissolved Hg²⁺ and MeHg concentrations, and were directly a function of bacterioplankton densities. Addition of antibiotics reduced Hg⁰ evasion to undetectable levels. These Hg evasion experiments showed that for 1 µm-filtered Long Island coastal waters from the Atlantic with natural bacterial assemblages and bacterial densities of about 1 x 10⁶ ml⁻¹, approximately 25% of Hg^{2+} and 18% of MeHg were transformed to Hg^0 in 4 days at ~23°C. In Long Island Sound waters, with 5 x 10⁶ bacterial cells ml⁻¹, 60% of Hg²⁺ and 19% of MeHg were converted to Hg⁰ and trapped in the air within 4 days. When bacterial assemblages were exposed to Hg²⁺, the Hg⁰ production rate declined after one day, but the rate of Hg⁰ evasion from bacterial assemblages exposed to MeHg remained constant over 4 days, suggesting two distinct production pathways. Total Hg⁰ production for both Hg²⁺ and MeHg exposures at ~23°C were 6 times those at 4°C, indicating such transformations were mainly driven by metabolic processes.