The influence of diagenesis and mineralogy on Ca isotopes in Lower-Upper Triassic carbonate rocks

K.V. LAU^{1*}, K. MAHER¹, S. BROWN², J.C. SILVA-TAMAYO³, A.B. JOST⁴, D. ALTINER⁵, D.J. DEPAOLO², A. EISENHAUER⁶, D.J. LEHRMANN⁷, A. PAYTAN⁸, M. YU⁹, AND J.L. PAYNE¹

¹Department of Geological Sciences, Stanford University (*kimberly.lau@ucr.edu)

²Center for Isotope Geochemistry, Lawrence Berkeley National Laboratory and UC Berkeley

³Department of Earth and Atmospheric Sciences, University of Houston

⁴Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology

⁵Department of Geological Engineering, Middle East Technical University

⁶GEOMAR, Helmholtz Centre for Ocean Research Kiel

⁷Geosciences Department, Trinity University

⁸Institute of Marine Sciences, UC Santa Cruz

⁹College of Resource and Environmental Engineering, Guizhou University

The calcium cycle is linked to the carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium isotope ratios (⁴⁴Ca/⁴⁰Ca, or $\delta^{44/40}$ Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. However, $\delta^{44/40}$ Ca of carbonate rocks is influenced not only by seawater but also by fractionation associated with CaCO3 precipitation and by diagenesis. We investigate the controls on carbonate $\delta^{44/40}$ Ca in Upper Permian to Upper Triassic limestones (~253 to 235 Ma) from south China and Turkey. Parallel negative δ^{13} C and $\delta^{44/40}$ Ca excursions were previously identified at the end-Permian extinction horizon. We find a second negative excursion of ~0.2‰ in both south China and Turkey within Lower Triassic strata. However, this excursion is not synchronous and $\delta^{44/40}$ Ca values are different between the two sections. The excursion cannot be interpreted as secular change in the $\delta^{44/40}$ Ca of global seawater. The [Sr] and $\delta^{44/40}$ Ca data are best described statistically by a log-linear correlation that exists also in many previously published datasets. Using a model of early marine diagenetic water-rock interaction, we illustrate that this correlation can be explained by the chemical evolution of carbonate sediment samples with a range of initial calcite-to-aragonite ratios. Although these factors strongly influence carbonate $\delta^{44/40}$ Ca values, it may still be possible to infer changes in seawater $\delta^{44/40}$ Ca from carbonate rocks after controlling for recrystallization effects.