Revisiting the Ti isotope inventory of the Moon

 $\begin{array}{l} Sebastian \ Kommescher^{1*}, Maxwell \ M. \ Thiemens^{1}, \\ Carsten \ Münker^{1}, Peter \ Sprung^{1} \end{array}$

<u>*s.kommescher@uni-koeln.de</u>, ¹University of Cologne, Germany

Titanium isotope ratios are being established as a genetic tracer for nucleosynthetic heritage [1, 2]. Different solar system bodies show significant massindependent differences, primarily in ε^{50} Ti [2]. Of particular interest are possible variations within the Earth-Moon system. Secondary neutron capture reactions, however, may significantly bias genetic interpretations of Ti isotope data [1]. We here re-assess the extent of such bias and possible genetic implications of the ε^{50} Ti of lunar rocks.

We present whole rock ε^{50} Ti (high-resolution), μ^{180} Hf, and ϵ^{149} Sm MC-ICP MS data for a suite of lunar samples ranging from KREEP to low-Ti and high-Ti mare basalts and covering a wide spectrum of exposure to galactic cosmic rays. Repeated analyses of NIST SRM 3162a yield an external reproducibility (2 s.d., N = 27) for interference- and mass bias corrected ε^{50} Ti of \pm 0.26 ϵ -units. Our data show that ⁵⁰Ti correlates well (MSWD = 0.1, N = 3) with proxies for epithermal (μ^{180} Hf) and thermal (ϵ^{149} Sm) neutron capture [3, 4]. The zero-exposure ε^{50} Ti of our lunar sample suite agrees well with that of terrestrial rock standards, irrespective of the neutron capture proxy used in its determination. In the most extreme case, our data suggests a maximum difference of 12 ppm in Earth-Moon system for ε^{50} Ti.

[1] Zhang et al. (2012), nature geoscience 5, 251-255.

[2] Trinquier et al. (2009), Science **324**, 374-376. [3] Sprung et al. (2010) Earth and Planetary Science Letters **295**, 1-11. [4] Sprung et al. (2013), Earth and Planetary Science Letters **308**, 77-87