Strucrture of silica glass under extreme conditions revealed by diffraction measurement and topological analysis

SHINJI KOHARA^{1,2,3,4}

¹Synchrotron X-ray Group, Light / Quantum Beam Field, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan ²Modeling Group, Information Integrated Materials Design Field, Center for Materials Research by Information Integration, NIMS

³Research & Utilization Division, Japan Synchrotron

Radiation Research Institute, SPring-8 ⁴PRESTO, Japan Science and Technology Agency e-mail: KOHARA.Shinji@nims.go.jp

Silica glass is a prototypical network-forming glass, which exhibits a tetraheral network with sharing oxygen atoms at the corner of SiO₄ tetrahedra. It is well known that tetreahedral network glasses show a first sharp diffraction peak (FSDP) in diffraction data, manifested by intermediaterange ordering with the formation of cavities. It is interesting to reveal the behaviour of structral modification at intermediate-range scale associated with the reduction of cavities and the modification of short-range ordering under high temperatures and high pressures. Our recent researches on silica glass under extreme conditions by x-ray and neutron diffraction measreuments with the aid of computer simulations and topological analyses [1] are introduced. Furthermore, the mechanism of densification of silica glass under different extreme conditions is discussed.

[1] Hiraoka et al. (2016) Proc. Natl. Acad. Sci. U.S.A. 113, 7035–7040.