Seasonal variations of multiple isotopic compositions of atmospheric sulfate and nitrate at coastal Antarctica

SAKIKO ISHINO¹, SHOHEI HATTORI¹, JOEL SAVARINO², MICHEL LEGRAND², SUZANNE PREUNKERT², BRUNO JOUDAIN², NAOHIRO YOSHIDA^{1,3}*

¹ School of Materials and Chemical Technology, Tokyo Institute of Technology, Japan

(*correspondence: yoshida.n.aa@m.titech.ac.jp)

²Univ. Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France

³Earth-Life Science Institute, Tokyo Institute of Technology, Japan

Sulfur, nitroge, and oxygen isotopic compositions of atmospheric sulfate (SO4^{2–}) and nitrate (NO3[–]) reflect their sources and formation pathways in the atmosphere. We present a year-round observation of multiple isotopic compositions of atmospheric sulfate (SO4^{2–}) and nitrate (NO3[–]) in aerosol samples collected at Dumont d'Urville (66°40'S, 140°01'E), coastal Antarctica, throughout the year 2011.

Based on the measurements of triple oxygen isotopic compositions ($\Delta^{17}O = \delta^{17}O - 0.52 \times \delta^{18}O$) of atmospheric SO_4^{2-} and NO_3^{-} , we confirmed that $\Delta^{17}O$ values of SO_4^{2-} and NO_{3}^{-} reflect sunlight-driven changes in the relative contribution of O₃ oxidation to the oxidation by HO_x, RO_x, and H₂O₂. In addition, by comparing Δ^{17} O values of SO₄²⁻ and NO₃⁻ to ozone mixing ratios, we found that Δ^{17} O values of SO₄²⁻ observed in spring (September to November) were lower than in fall (March to May), while there was no significant spring-fall difference in Δ^{17} O values of NO₃⁻ values. The relatively lower sensitivity of Δ^{17} O values of SO₄²⁻ to the ozone mixing ratio in spring compared to fall is possibly explained by (i) the increased contribution of SO₂ oxidations by OH and H₂O₂ caused by NO_x emission from snowpack and/or (ii) SO2 oxidation by hypohalous acids (HOX = HOCl + HOBr) in the aqueous phase.

 δ^{34} S values of SO₄²⁻ in summer season show similar values to dimethyl sulfide (DMS), in contrast to ³⁴S depletion in winter. This finding shows that the sulfur source of SO₄²⁻ in coastal Antarctica is not only marine biogenic production. Throughout the year, ³³S/³²S and ³⁶S/³²S ratios show no sighnificant deviations from mass-dependent law, suggesting there are negligible contricutions of mass-independent fractionation in clean coastal Antarctic regions.