Atmospheric SO₂ oxidation by NO₂ in the urban atmosphere: a view through sulfur multi-isotope compositions

DAVID AU YANG ^{12*}, GERARD BARDOUX ¹, DAVID WIDORY², NELLY ASSAYAG¹, PIERRE CARTIGNY¹

¹Laboratoire de Géochimie des Isotopes Stables, IPG-Paris, France [*correspondence : <u>auyang@ipgp.fr</u>,]

² Dépt des Sciences de la Terre et de l'Atmosphère, UQAM -GEOTOP, Canada

Modern anthropogenic aerosols usually exhibit a low but significant Δ^{33} S signature (-0.1 to 0.5‰). While the main oxidation pathways (O₂+TMI, H₂O₂, OH) would explain most of this Δ^{33} S range they cannot explain the highest Δ^{33} S-values (close to 0.5‰). We investigated the possibility that an additional oxidation pathway is involved in urban areas, focusing in particular on the one involving NO₂, a major species in urban atmospheres.

We are reporting ${}^{34}\alpha$, ${}^{33}\beta$ and ${}^{36}\beta$ -values specific to the NO₂ oxidation pathway at different temperatures (3 to 52°C). The NO₂ oxidation pathway (excluding the datum at 3°C) is characterized by a higher ${}^{34}\alpha$ (-0.349T+11.632) than the O₂+TMI oxidation pathway (-5.039-0.237T), H₂O₂ (16.51-0.085T), OH (10.60-0.004T) reported by Harris *et al.* (2013). The NO₂ oxidation pathway is also characterized by ${}^{33}\beta$ -value = 0.514 and ${}^{36}\beta$ -value = 1.921 that are closer to the mass dependent values (0.515 and 1.889, respectively) than the others oxidation pathways (Harris *et al.*, 2013). This leads to the conclusion that the NO₂ oxidation pathway cannot explain the high Δ^{33} S-values measured among the urban aerosols.

Those new parameters were then added to an oxidation model apparented to a Rayleigh distillation where both SO₂ oxidized into sulfate (SO₄) and SO₂ deposition are removed. Our results shows that the NO₂ oxydation pathway may be overprinted by a mixing of O₂ +TMI and OH as both fractionate the ³³S and ³⁶S isotopes similarly. We thus conclude that both O₂+TMI and OH oxydation pathways could be overestimated in urban areas. Another yet undiscovered process should be involved to explain the highest Δ^{33} S-values that we observed in our urban aerosol samples, possibly the Criegee intermediate complex.

Harris, E., Sinha, B., Hoppe, P. et Ono, S. (2013). High-precision measurements of ³³S and ³⁴S fractionation during SO₂ oxidation reveal causes of seasonality in SO₂ and sulfate isotopic composition. *Environmental science & technology*, *47*(21), 12174-12183.