Re-Os systematics during water-oil interaction

Nicole C. Hurtig¹, Holly J. Stein¹,², Judith L. Hannah¹,²

¹ AIRIE Program, Colorado State University, Fort Collins, CO, 80523-1482, USA
² CEED, University of Oslo, PO Box 1028, 0315 Norway

Single crude oils have been dated using the Re-Os geochronometer, which is based on the radioactive decay of ^{187}Re to ^{187}Os [1]. An isochron age can be derived from a single crude oil sample if the crude oil and its maltene (n-heptane soluble) and asphaltene (n-heptane insoluble) fractions are well correlated on a $^{187}\text{Re}/^{188}\text{Os}$-$^{187}\text{Os}/^{188}\text{Os}$ plot [2]. Oil-water interaction is a key process for transferring Re and Os into oil [3,4], whereas Re-Os partitioning during maturation may be minimal [5]. However, Re-Os chemistry controlling these processes remains poorly understood. Here we present results from experimental interaction of aqueous fluids with three different crude oils.

The three different crude oils had distinct Re-Os isotopic signatures before water-oil interaction. These were overprinted by the aqueous fluid during interaction, with the $^{187}\text{Os}/^{188}\text{Os}$ isotopic composition of the oil rapidly approaching that of the fluid. The $^{187}\text{Re}/^{188}\text{Os}$ ratios varied during the experiments as a function of oil chemistry, water to oil ratios and interaction time. This indicates that the Re-Os geochronometer was reset during water-oil interaction. In contrast, partial isotopic overprint experiments show that the crude oil and its fractions remain isochronous during interaction with a non-radiogenic aqueous fluid, thereby preserving age information. The Os isotopic composition of the crude oil and its fractions changed systematically and formed a mixing line between the unreacted oil and the aqueous fluid. In natural systems, therefore, the Re-Os systematics obtained from crude oil and its fractions remains intact after water-oil interaction, retaining the age.