New perspectives on the Cenozoic δ⁷Li record

MICHAEL J. HENEHAN 1* , RICHARD ABELL 2,3 , RAIN TSONG 1 , BORIANA KALDERON-ASAEL 1 , NOAH J. PLANAVSKY 1 , JANET BURKE 1 , LEANNE E. ELDER 1 , GAVIN L. FOSTER 4 , CATHERINE V. DAVIS 5 , AMY E. MAAS 6 , TIM ELLIOTT 3 , DANIELA N. SCHMIDT 3 AND PINCELLI M. HULL 1 .

- ¹Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA. (correspondence to: <u>Michael.Henehan@yale.edu</u>)
- ² Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
- ³ Department of Earth Sciences, University of Bristol, Queens Road, Bristol BS8 1RJ, UK
- Ocean and Earth Sciences, University of Southampton, European Way, Southampton SO14 3ZH, UK
- School of the Earth, Ocean and Environment, U. South Carolina, 701 Sumter Street, Columbia, SC 29208, USA.
- ⁶ Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St.George's GE 01, Bermuda

The driving mechanisms behind light lithium isotope ratios ($\delta^7 \text{Li}$) in early Cenozoic seawater, and their subsequent rise to heavy values today[1], have been the focus of intense debate and scientific investigation. Much of this work has focussed on the input fluxes from land [e.g. 2-5]. However, relatively little attention has been paid to the fidelity of the seawater signal in the archive used to construct these records: the planktic foraminifera. In the modern ocean alone, planktonic foraminifera reveal $\delta^7 \text{Li}$ values of between 25 and 31%[6], but the drivers of this interspecific variation are largely unknown.

Here we present results from Holocene core-tops that span a wide range of hydrographic settings, also revealing considerable variability in $\delta^7 Li$ across species and between sites. By combining these data with new laboratory culture experiments and downcore measurements, we identify some of the key controlling factors that influence foraminiferal $\delta^7 Li$. We interrogate the physiological basis for these geochemical differences, and discuss the potential influence of these vital effects on interpreting published Cenozoic marine records.

[1] Misra and Froelich (2012) *Science* **335**, 818-822. [2] Bouchez *et al.* (2013) *Am. J. Sci.* **313**, 267-308. [3] Li and West (2014) *EPSL*, **401**, 284-293. [4] Pogge von Strandmann and Henderson (2014) *Geology* **43**, 67-70. [5] Dellinger *et al.* (2015) *GCA*, 71-93. [6] Hathorne and James (2006) *EPSL*, **246**, 393-406.