Δ^{13} CH₃D and Δ^{12} CH₂D₂ signals of methanogenesis and methanotrophy

JEANINE L. ASH¹*, MATTHIAS EGGER², ISSAKU KOHL¹, TINA TREUDE¹, CAROLINE P. SLOMP³, BARRY CRAGG⁴, R. JOHN PARKES⁴, DOUGLAS RUMBLE⁵, EDWARD D. YOUNG¹

¹Department of Earth, Planetary, and Space Sciences; UCLA (*correspondence: jlash@ucla.edu)

 ²Center for Geomicrobiology; Aarhus University
³Department of Earth Sciences-Geochemistry, Faculty of Geosciences; Utrecht University

⁴School of Earth and Ocean Sciences; Cardiff University ⁵Geophysical Laboratory; Carnegie Institution

Methanogens in marine sediments are estimated to produce between 85-300 Tg of methane (CH₄) annually, yet the net flux of CH₄ to the water column is strictly controlled by the anaerobic oxidation of methane (AOM). Hypotheses that abrupt imbalances in this delicate cycle can occur as a result of anthropogenic climate change drive our desire to better understand microbial CH₄ production and consumption in the deep biosphere. The ability to measure the relative abundances of two doubly-substituted rare isotopologues of gases with biogeochemical relevance provides new constraints on sources and sinks of these gases [1]. Here, we report the first measurements of fully resolved ¹³CH₃D and ¹²CH₂D₂ from samples of deep biosphere CH₄ gas collected during IODP Exp. 347 to the Baltic Sea.

We measured sedimentary CH₄ samples from Bornholm Basin and Landsort Deep in the Baltic Sea for $\Delta^{13}CH_3D$, Δ^{12} CH₂D₂, δ^{13} C and δ D. Results are interpreted within the context of porewater geochemistry, activity measurements, and a multicomponent diagenetic model that estimates rates of CH₄ production, SO₄-AOM and Fe-AOM [2]. Δ^{13} CH₃D and Δ^{12} CH₂D₂ vary with depth concurrent with changing rates of methanogenesis and methanotrophy. Samples associated with higher rates of methanogenesis exhibit disequilibrium of up to 2‰ in Δ^{13} CH₃D and 13‰ in Δ^{12} CH₂D₂ while those with higher rates of methanotrophy approach intra-species We hypothesize that thermodynamic equilibrium. methanogenesis creates CH₄ in isotopic disequilibrium by combinatorial, reservoir and quantum tunneling effects, and enzymatic back reaction during AOM drives the residue towards equilibrium [1, 3-4].

Young *et al.*, (2017) GCA 203,235-264. [2] Egger *et al.*, (2017) GCA in press. [3] Yeung, (2016) GCA 172, 22-38.
Timmers *et al.*, (2017) Archaea 1654237.