Dynamics and Energetics of Organic –mineral interactions at the Metal Oxide-Water Interface

OMAR R.HARVEY¹

¹School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX 76129, United States

The types of bonding involved in organic-mineral interactions are well understood but the in-situ evolution of their multimodal behavior and the complex outcomes produced in natural systems is not well elucidated. A flow adsorption microcalorimetry-UV (FAMC-UV) technique for studying in-situ binding of organic solutes at the mineral-water interface is presented. Results are reported for a benzoic acid (BA)-SiO₂ model system. Focus is on the site-specific evolution of binding kinetics, binding enthalpy and free energy of binding activation and what they tell us.

Results reflected binding being BA reversible (with water), and occurring on Si₅O₄ (Q^4) , Si₄O₃OH (Q^3) and Si₄O₂(OH)₂ (Q^2) surface sites [1]. Binding on the sites followed the order Q² $(54\%) > Q^3 (32\%) > Q^2$ (14%) with psuedofirst order rate constants of 3.05, 1.58 1.44 min⁻¹, and respectively (Figure 1a). Overall enthalpy

of binding $(\Delta_r H)$ Figure 1. Site-specific binding evolution was -2.4 kJ mol⁻¹ (a) and associated energetics (b) for and remained benzoic acid on silica at pH 3

constant throughout. In contrast, site-specific $\Delta_r H$ varied with reaction progress, eventually converging at -2.1 ± 0.5 kJ mol⁻¹ (Figure 1b). Free energy of binding activation ($\Delta_r G^{**}$) on the sites was 80 kJ mol⁻¹. The reversibility of BA binding, the overall low $\Delta_r H$ and the positive $\Delta_r G^{**}$ are all consistent with physisorption and BA favoring the solution phase than the SiO₂ surface . BA on SiO₂ is most likely on Q⁴ and Q² sites with higher binding strength at low site coverages.

[1] Rimola, Costa, Sodupe, Lambert & Ugliengo (2013), *Chemical Reviews 113*, 4216-4313.