Multiple sulfur isotopes of sulfate in Beijing PM_{2.5}

Xiaokun Han¹, Qingjun Guo^{1,2*}, Harald Strauss³, Congqiang Liu⁴, Jian Hu⁴, Jing Kong¹, Yanwen Wang¹

¹Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China (*correspondence: <u>guoqi@igsnrr.ac.cn</u>)

²College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

³Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany

⁴State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang Guizhou 550002, China

In recent years, air pollution has become a serious problem in China. Mass-dependent (S-MDF) and massindependent fractionation of sulfur isotopes (S-MIF) of sulfate in PM2.5 samples collected during four seasons in Beijing is used to better constraining potential sources and formation processes of sulfate aerosol. The mean $\delta^{34}\!S$ value (S-MDF) of sulfate in PM2.5 is close to that of coals used in North China, suggesting a considerable contribution of sulfate from coal combustion to the atmospheric sulfate pool. The Δ^{33} S value (S-MIF) of sulfate in PM_{2.5} shows a pronounced seasonality with positive values in spring, summer and autumn (mean=0.227±0.110‰, n=30) and negative values in winter (mean=-0.211±0.188‰, n=18). Sulfur isotope anomalies (Δ^{33} S up to 0.480 ‰) in spring, summer and autumn are interpreted to result from SO2 photolysis with self-shielding. The negative Δ^{33} S signature $(-0.300\% < \Delta^{33}S < 0\%)$ in winter may be related to incomplete combustion of coal in residential stoves during the heating season. However, negative Δ^{33} S anomalies (-0.664‰< Δ^{33} S< -0.300‰) in winter and positive Δ^{33} S anomalies $(0.300\% < \Delta^{33}S < 0.480\%)$ in spring, summer and autumn suggest sulfur isotopic equilibrium on an annual time frame (mean Δ^{33} S value=0.075±0.253‰, n=46), which may provide an implication for the absence of S-MIF in sediments of the younger geologic record.

Acknowledgements: The research was financially supported by the NS of China (No. 41625006) and the Sino-German Center (No. GZ1055).