Using noble gas isotopes to constrain the source of CO₂ in the Vaca Muerta Shale in the Neuquén Basin (Argentina)

Domokos Györe^{1*} Magali Pujol² Stuart Gilfillan³ Finlay Stuart¹ Sebastian Estrada⁴

 ¹Isotope Geoscience Unit, SUERC, East Kilbride, G75 0QF, U.K.; (* correspondence: <u>domokos.gyore@glasgow.ac.uk</u>)
²TOTAL EP, CSTJF, Avenue Larribau, 64000 Pau, France.
³School of GeoScience, Univ. of Edinburgh, EH9 3FE, U.K.
⁴TOTAL Austral, Moreno 877, Buenos Aires, Argentina.

The Neuquén Basin in west-central Argentina contains significant resources of conventional and unconventional hydrocarbons. The Lower Cretaceous Mulichinco Formation is the main reservoir and has been exploited for conventional hydrocarbons since the early 1990s. The source rock, the Upper Jurassic-Lower Cretaceous Vaca Muerta shale has been targeted for shale oil/gas production since 2010. At several locations well gases from both the Mulichinco and Vaca Muerta Formations exhibit high CO₂ concentrations. This study aims to determine the origin of the CO₂ and establish if there is a structural contol on its occurrence, by intergrating measurements of noble gas isotopes from the well gases with regional structural geology.

 δ^{13} C of the CO₂ is between -0.9 and -3.3 ‰, making it difficult to distinguish between a metamorphic or a magmatic origin. ³He/⁴He are up to 3.95 R₄ and neon isotope ratios clearly indicate that mantle-derived gases have mixed with the *in situ* hydrocarbons. CO₂/³He ratios are two orders of magnitude lower than the magmatic range and strongly correlate with CO₂ content (R² = 0.99) indicating significant CO₂ without concomitant He loss. Using our measurements we differentiate between adsorption, dissolution and precipitation of CO₂ as responsible processes for its loss.

The CO_2 is present when the two major fault systems in the basin intersect, with the deeper set propagating into the Upper Jurassic Auquilco Evaporite Fm, beneath the Vaca Muaerta Fm [1]. This indicates that the CO_2 is likely external to the petroleum system, originating from a magmatic source located beneath the Auquilco Fm. We aim to use the noble gas isotopes to differentiate between an asthenospherederived melt trapped in the crust during Lower-Middle Jurassic rifting, and subduction-derived melt emplaced in the Early Jurassic-Early Cretaceous. This information can now be used to assist in positioning future drilling acitivities away from likely high CO_2 occurrences.

[1] Howell et al. (2005) Geol. Soc. London Spec. Pub. 252, 1-14.