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Optically Stimulated Luminescence (OSL) dating, 
arguably the latest arrival on the low-temperature 
thermochronometry scene [1], exploits the low thermal 
stabilities of electron traps occurring in natural minerals 
(Ea~1-2 eV, equivalent to ~100-200 kJ/mol), to infer the very 
recent (<0.5 Ma) passage of rocks through the shallowest 
(<100 °C) subsurface geotherms [2]. Despite initial hopes 
that the new technique would utilise the predominantly first-
order charge traffic in quartz [1], later studies have shown 
that bedrock quartz OSL is characteristically dim, exhibits 
large sensitivity changes, and is frequently contaminated by 
feldspar emissions [3], thus advocating a methodological shift 
to the brighter and more reproducible OSL signals from 
bedrock feldspar [4-7]. 

The strikingly non-linear response of feldspar OSL to 
ionising radiation and isothermal storage can be successfully 
modelled in a variety of seemingly appropriate ways [4]. 
Here, we take a critical look at two of our former approaches, 
including general-order kinetics [5], and the band-tail 
excitation model [6-7]. We present new experimental data 
that highlight weaknesses in these models, and promote the 
excited-state tunnelling model [4; 8-9], which captures 
progressively more features of the feldspar OSL signal via a 
set of physically-meaningful kinetic parameters. 
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