Understanding Isotope Fractionation

in Microbial Methanogenesis

J. GROPP¹*, Q. JIN², M.A. IRON³, I. HALEVY¹

 ¹Dept. of Earth and Planetary Sciences, Weizmann Institute of Science, Israel (jonathan.gropp@weizmann.ac.il)
² Dept. of Earth Sciences, U. Oregon, Eugene, OR, USA

³ Dept. of Chemical Research Support, Weizmann Institute of Science, Israel

During microbial production of CH₄ (methanogenesis), the CH₄ product is typically depleted in ¹³C relative to the substrate CO₂, with fractionations between ~20 and ~90‰. The dependence of C isotope fractionation on the energy available to methanogens and on the rate of methanogenesis has been studied in experiments and related to the reversibility of the enzymaticallycatalysed steps in the pathway. However, mechanistic understanding of this behaviour is incomplete.

We developed a mechanistic model describing cell physiology and C isotope fractionation during hydrogenotrophic methanogenesis. Using kinetic and thermodynamic parameters, we numerically solved this model to yield metabolite concentrations and reversibilities of the enzyme reactions in the pathway at a steady state. We used these reversibilities, together with a novel set of equilibrium fractionation factors calculated by density functional theory, and estimates of kinetic fractionation factors, to calculate the net C isotope fractionation as a function of the energy available to the methanogens.

The model reproduces observed relationships between the Gibbs free energy of the overall reaction (ΔG_r) and C isotope fractionation, and its solutions illustrate a dual control of reaction reversibility on C isotope fractionation. Specifically, where ΔG_r departs from zero (at approximately –20 kJ mol⁻¹), a peak in net fractionation (~80-90‰) arises from the departure from equilibrium of the last two steps in the pathway (catalysed by Mcr and Mtr). At increasingly negative ΔG_r , gradual departure from equilibrium of the first step (catalysed by Fmd) leads to a decrease in net fractionation to ~20-40‰. Thus, we mechanistically explain the relation between ΔG_r and C isotope fractionation, further elucidating the factors governing the isotopic composition of CH₄ in the environment.