²³¹Pa and ²³⁰Th in the Barents Sea and the Nansen basin: implications for shelf-basin interactions and changes in particle flux S. GDANIEC¹²³, M.ROY-BARMAN², M. LEVIER², L. MISSIAEN², L.FOLIOT², A. DAPOIGNY², O. VALK⁴, M. RUTGERS VAN DER LOEFF⁴, AND P. S. ANDERSSON³ Stockholm University, Department of Geological Sciences, S106 91, Stockholm, Sweden, Sandra.gdaniec@nrm.se Laboratorie des Sciences du Climat et de l'Environnement, Gif-Sur-Yvette, France, matthieu.roybarman@lsce.ipsl.fr, martin.levier@hotmail.fr, lise.missiaen@lsce.ipsl.fr> lorna.Foliot@lsce.ipsl.fr, arnaud.dapoigny@lsce.ipsl.fr Swedish Museum of Natural History, Department of Geosciences, Stockholm, Sweden, per.andersson@nrm.se Alfred Wegener Institut, Hemholtz Zentrum für Polar und Meeresforschung, Bremerhaven, Germany, ole.valk@awi.de, mloeff@awi.de In seawater, particle reactive ²³¹Pa and ²³⁰Th are uniformly produced by decay of soluble ²³⁵U and ²³⁴U. Due to differences in particle reactivity, ²³⁰Th tends to be removed to the sediment close to its production site, while ²³¹Pa is more prone to lateral transport and is removed to the sediments in areas of high particle flux (i.e. boundary scavenging). Due to a combination of perennial ice cover, large shelf areas and river runoff, boundary scavenging in the Arctic Ocean strongly impacts the distribution of ²³¹Pa and ²³⁰Th in the water column. Here, ²³¹Pa and ²³⁰Th were analyzed in seawater and particles from the Arctic GEOTRACES section GN04 along the Barents shelf and in the Nansen basin. Key observations include lower concentrations of dissolved ²³¹Pa and ²³⁰Th on the Barents shelf compared to the Nansen basin, indicating enhanced removal of ²³¹Pa and ²³⁰Th near the margin. The particulate nuclide/total nuclide ratio increases from the surface (0.2% for $^{231}Pa_{xs}$ and 0.7% for $^{230}Th_{xs}$) to the seafloor (11% for $^{231}Pa_{xs}$ and 71% for $^{230}Th_{xs}$), highlighting the role of deep scavenging. The fractionation factor between ^{231}Pa and ^{230}Th ($F_{Th/Pa}$) ranges from $\sim\!\!3$ to 25 and generally increases with depth. Comparison between suspended particles and sediments will be provided. Further, dissolved ²³¹Pa_{xs} and ²³⁰Th_{xs} concentrations in the Nansen basin are lower compared to concentrations measured 20 years ago¹. This might reflect changes in particle flux and/or changes in circulation patterns. ¹Scholten, J., Rutgers van der Loeff, M., 1995. Distribution of ²³⁰Th and ²³¹Pa in the water column in relation to the ventilation of the deep Arctic basins. Deep. Res. Part II 42, 1519–1531.