
Dependence of $\mu^{142}Nd$ anomalies on the choice of terrestrial standard

IKSHU GAUTAM¹* AND JYOTIRANJAN S. RAY²

 $^{142}Nd/^{144}Nd$ isotope ratio is a tracer of the early differentiation of the silicate Earth. Anomalous $\mu^{142}Nd$ values, where $\mu=(((^{142}Nd/^{144}Nd)_{rock}/(^{142}Nd/^{144}Nd)_{terrestrial standard})-1)\times 10^6$, have been widely used for deciphering nature and timing of such early differentiation events. The very definition of μ assumes that the $^{142}Nd/^{144}Nd$ of the terrestrial standard is equivalent to that of the modern accessible mantle. Unfortunately, however, several recent studies have shown that the $^{142}Nd/^{144}Nd$ ratios of commonly used terrestrial standards are not identical. The same is true for other nonradiogenic isotopic ratios of Nd as well [1,2].

Our analyses of Ames Nd and JNdi-1 reveal that $^{142}\text{Nd}/^{144}\text{Nd}$ of JNdi-1 (n =11) is 6 ppm lower than that of the Ames Nd (longterm average). Therefore, it is higly likely that a $\mu^{142}\text{Nd}$ anomaly oberserved with respect to one standard might disappear with the other. We did observe exactly the same while analysing alkaline rocks/TTG from India, wherein negative/zero values with respect to Ames Nd became zero/positive when calculated against JNdi-1[Fig. 1]. Thus it is highly desirable that the terrestrial standard (and its $^{142}\text{Nd}/^{144}\text{Nd}$) be fixed uniformly. JNdi-1 appears to be a good canditate for the purpose.

Figure 1: 142 Nd/ 144 Nd of rock standard BHVO-2, alkaline rocks and TTG. Blue and yellow lines represent average 142 Nd/ 144 Nd for Ames Nd and JNdi-1 respectively.

[1] Wakaki, S. & Tanaka (2012) Int. J. Mass Spectrom. **323-324**, 45–54. [2] Saji et al. (2016) J. Anal. At. Spectrom. **31**, 1490–1504

¹ Physical Research Laboratory, Ahmedabad, India – 380009, <u>ikshu@prl.res.in</u>

² Physical Research Laboratory, Ahmedabad, India – 380009, <u>jsray@prl.res.in</u>