Toward Quantitative Remote Sensing of Pb Contamination from Legacy Mining (Kabwe, Zambia)

LONIA FRIEDLANDER 1* and YAAKOV $GARB^{2}$

- ¹The Jacob Blaustein Institutes for Desert Research, Ben Gurion Univ. of the Negev, Sede Boqer, 8499000, Israel (*correspondence: friedlal@post.bgu.ac.il)
- ² The Jacob Blaustein Institutes for Desert Research, Ben Gurion Univ. of the Negev, Sede Boqer, 8499000, Israel (ygarb@bgu.ac.il)

Pb Detection in WorldView-2 Satellite Images

Heavy metals released by mining and ore processing pose grave human health and environmental risks [1]. Spectroscopy offers exciting new possibilities for detecting and monitoring contaminants [2]. However, linking field or laboratory analyses to remote sensing for quantitative environmental contaminant detection remains challenging. We attempt to couple field XRF [3] Pb concentrations in soil ([Pb], ppm) with satellite image analysis to locate other areas of high [Pb].

Figure 1: Classified WorldView-2 satellite image of Kabwe, Zambia with regions of possible high Pb contamination highlighted red and XRF sample locations colored by [Pb] overlain (+ [Pb] \geq 10000 ppm, + [Pb] \geq 5000 ppm, + [Pb] \geq 2000 ppm, + [Pb] \leq 1200 ppm, + [Pb] \leq 400 ppm).

Discussion of Results

Classifying pixels by spectral character using [Pb] in soil samples examined at known locations throughout the image provides a map of probable areas of high Pb contamination. Additional work will investigate soil processes affecting contaminant spectroscopy and quantitative remote sensing.

 Hutchinson & Whitby (1974) Environ. Conservation 1, 123-32. [2] Kemper & Sommer (2002) Environ. Sci. Technol. 36, 2742-2747. [3] Rouillon & Taylor (2016) Environ. Pollut. 214, 255-264.