Seasonal production and δD composition of *n*-alkanes and *n*alkanoic acids in a temperate forest

 $\begin{array}{c} {\sf Erika J. Freimuth^{*1}, Aaron F. Diefendorf^1,} \\ {\sf Thomas V. Lowell^1} \end{array}$

¹University of Cincinnati, 500 Geology-Physics Bldg, Cincinnati, OH 45221-0013 (*correspondence: freimuej@mail.uc.edu)

The hydrogen isotopic composition of plant waxes (δD_{wax}) in sediments is an important proxy for the δD of past precipitation (δD_p) and thus paleohydrologic conditions. However, several areas of proxy uncertainty remain. First, sedimentary δD_{wax} records may be biased toward the season of wax synthesis in plants. Second, *n*-alkanes and *n*-alkanoic acids may differ with respect to abundance, timing of synthesis, and δD fractionation of source water. Lastly, apparent fractionation (ε_{app}) between δD_p and δD_{wax} can vary widely among diverse catchment vegetation. To address these areas of uncertainty, we determined δD values of *n*-C₂₉ alkanes and n-C₂₈ alkanoic acids, as well as xylem and leaf water (δD_{lw}) at 12 points between March and October 2014 from 2-3 individuals of each of the deciduous angiosperm tree species (Prunus serotina, Acer saccharinum, Quercus rubra, Quercus alba, and Ulmus americana) that dominate the temperate forest at Brown's Lake Bog, Ohio, USA. n-Alkanes were generally produced in the 2-3 weeks following leaf emergence and at up to 30-fold higher concentrations than *n*-alkanoic acids, which were produced over the entire growing season. During leaf emergence and maturation, changes in δD_{lw} and metabolic status were key drivers of δD_{wax} . The two compound classes fractionated common source water to different extents, with ε_{app} approximately 19‰ greater for *n*-C₂₉ alkanes (-107%) than for *n*-C₂₈ alkanoic acids (-88%). We assess net analytical uncertainties and biological noise in forest-level ε_{app} to estimate the sensitivity of sediment-level δD_{wax} to δD_p changes.