What if Oxygenic Photosynthesis Isn't That Old?

W.W. FISCHER^{1*}, J. HEMP², P. HUGENHOLTZ³, J.E. JOHNSON⁴, D.H. PARKS³, P.M. SHIH⁵, R.M. SOO³, B. RASMUSSEN⁶, S.M. WEBB⁷, L.M. WARD¹

¹California Institute of Technology, Pasadena, CA USA (*correspondence: wfischer@caltech.edu)
²University of Utah, Salt Lake City, UT USA
³Australian Centre for Ecogenomics, University of Queensland, St Lucia, Queensland, Australia
²University of Colorado Boulder, Boulder, CO USA
⁵Joint BioEnergy Institute, Berkeley, CA USA
⁶Curtain University, Bentley, Western Australia, Australia
⁷Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025

Oxygenic photosynthesis is the most important bioenergetic innovation in the history of our planet; while it is widely appreciated that the rise of oxygen ca. 2.3 billion years ago owes it's sources of dioxygen to this metabolism, there is a substantial and longstanding debate about its evolutionary timing, with estimates ranging across more than one-and-a-half billion years of early Precambrian time.

Since the inception of Precambrian paleontology, photosynthetic Cyanobacteria (then blue-green algae) were considered among the earliest cells to appear in Earth surface environments. Here we present a suite of complementary observations for the origin and evolution of oxygenic photosynthesis from both the geological record [redox proxy data and models] and the biological record [structural biology of the reaction centers, and new constraints from the recent discoveries in the Cyanobacteria phylum of two clades of nonphotosynthetic close sister taxa to the photosynthetic Cyanobacteria (*Oxyphotobacteria*): the *Melainabacteria* and *Sericytochromatia*] that illustrate why this early adopted, and commonly held, premise is likely incorrect.

Data from both geological and biological archives illustrate that this metabolism, despite its biogeochemical prominence, is a relatively late discovery in the context of Earth's history. This suggests that stem-group *Oxyphotobacteria* arose close in time to the rise of oxygen, and demands that we take seriously the possibility that the rise of oxygen *ca.* 2.3 billion years ago was more or less directly caused by the evolution of oxygenic photosynthesis.