Linking H₂ concentration and redox state (*f*H₂ and *f*O₂) in H₂O-H₂-NaCl fluids

FAUGUEROLLES, C.^{1*} AND PICHAVANT M.¹

¹ISTO, CNRS/Univ.-Orléans/BRGM, 45100 Orléans, France (*colin.fauguerolles@univ-orleans.fr)

Hydrothermal processes such as serpentinization involve complex H₂-rich fluid mixtures whose thermodynamic properties are poorly known. One parameter that needs to be better constrained is the molal activity coefficient of H₂ dissolved in the fluid (γ H₂(aq)). Knowledge of this parameter is critical to link the H₂ molality (*m*H₂(aq), commonly measured in hydrothermal fluids) and the H₂ fugacity (*f*H₂(v), one redox parameter) by using:

 $fH_2(v) = \gamma H_2(aq). mH_2(aq).K$

where *K* denotes the equilibrium constant for the reaction:

$$H_2(aq) = H_2(v) \qquad (Rn1)$$

It is commonly assumed that $\gamma H_2(aq) \equiv \gamma CO_2(aq)$ at the same *T*. However the few determinations of $\gamma H_2(aq)$ suggest a complex dependence with *P*, *T* and NaCl concentration in the fluid [1] and so systematic data are needed.

In this study we have developed an experimental setup allowing γ H₂(aq) to be determined in H₂O-H₂-NaCl fluids at *T* = 250 to 450°C and *P* = 20 to 50MPa. The experiments are performed in large-volume Dickson-Seyfried bombs (1) fitted with an Au₂₀Pd₈₀ (wt.%) H₂ permeable membrane for *in situ f*H₂ monitoring and (2) allowing fluid sampling and *m*H₂(aq) determination by gas chromatography in the fluid aliquot. Knowing the equilibrium constant of the reaction (*Rn*1) from SUPCRT92 [2] allows γ H₂(aq) to be determined.

Results were first obtained for the H₂O-H₂ system at P = 50MPa. Determined γ H₂(aq) are very close to 1 (1.11±0.08 at 250°C and 0.99±0.08 at 300°C), in agreement with the value expected for such fluids (γ H₂(aq) = 1), and confirming the validity of our experimental setup. Experiments with NaClbearing fluids are now being conducted at T = 250 to 450°C and P = 20 to 50MPa. Results will be compared with the available data and applications for the calculation of fH₂ and fO_2 in hydrothermal fluids illustrated.

- Ding, K., and Seyfried, Jr., W.E. (1990). EOS, Transactions American Geophysical Union, 71:1680.
- [2] Johnson, J.W., Oelkers, E.H., and Helgeson, H.C. (1992). *Computers & Geosciences*, 18(7): 899-947.