Early cometary delivery of water to the inner solar system: Clues from the Moon and Mars

JAMES P. GREENWOOD¹, SHOICHI ITOH², NAOYA SAKAMOTO³, AND HISAYOSHI YURIMOTO³

¹Dept. of Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459 USA

²Graduate School of Science, Kyoto University, Kyoto JAPAN

³Natural History Sciences, Hokkaido University, Sapporo, JAPAN

How the Earth and the terrestrial bodies of the inner solar system received water and volatile elements is currently debated. Hydrogen isotopes may distinguish possible solar system reservoirs that could have been involved in this process, such as the Sun, chondritic meteorites, comets, trans-neptunian bodies, Kuiper-belt objects and interstellar organic matter¹. While chondritic material has long been favored for delivery of water to the Earth², the role of cometary ices cannot be ignored^{3,4}.

Our studies of Apollo lunar rock samples show that there is a high D/H component of lunar hydrogen that is commonly carried by apatite⁵. We have found abundant evidence that this high D/H is likely a lunar mantle signature, and that low D/H is likely due to later hydrogen isotope exchange with a D-poor component in the near lunar surface. The source of the high D/H component could be comets⁵ or H isotope fractionation during the proto-lunar disk stage⁶, magma ocean stage⁶ or final lava degassing^{8,9} of earth or chondritic water.

The high D/H of apatite, carbonate and glass in ancient Martian meteorite ALH 84001 has long been ascribed to atmospheric loss processes¹⁰⁻¹². We have re-analyzed apatite in ALH 84001 and find apatite $\delta D \sim +2000\%$, similar to the most D-enriched glasses and carbonate in the 4.0 Ga veins of ALH 84001^{11.12}. This is also similar to values of D/H measured by Curiosity at Gale Crater in ~3 Ga clay minerals¹³, suggesting that the Martian surface had a constant δD of ~+2000‰ from 3.0-4.0 Ga. We will explore if comets played a role in the high D/H of early Mars.

¹Robert et al. (2000) Space Sci. Rev. 92, 201; ²Alexander et al. (2012) Science 337, 721; ³Yurimoto et al. (2014) Geochem. J. 48, 549.; ⁴O'Brien et al. (2014) Icarus 239, 74; ⁵Greenwood et al. (2011) Nat. Geosci. doi:10.1038/ngeo1050; ⁶Desch +Taylor (2011) LPSC 42, #2005; ⁷Hauri et al. (2015) EPSL 409, 252; ⁸Tartese+Anand (2013) EPSL 361, 480; ⁹Saal et al. (2013) ScienceExpress; ¹⁰Greenwood et al. (2008) GRL; ¹¹Boctor et al. (2003) GCA 67, 3971; ¹²Sugiura+Hoshino (2000) Met. Planet. Sci. 35, 373; ¹³Mahaffey et al., (2015) Science 347, 412.