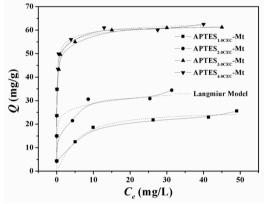
APTES grafted montmorillonite used as an efficient adsorbent for removal of Co²⁺


BEINI GONG¹, PINGXIAO WU¹²*

¹School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China (esbngong@scut.edu.cn, pppxwu@scut.edu.cn)

²The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China (*correspondence: pppxwu@scut.edu.cn)

Batch Experiments

Stock Co^{2+} solution was prepared by dissolving appropriate amount of $CoCl_2 \cdot 6H_2O$ in distilled water. Batch adsorption isotherm experiments were conducted under the conditions: pH 7.5, initial Co^{2+} concentrations (10-300 mg/L), and contact time 30 h.

Figure 1: The adsorption isotherm of Co^{2+} by APTES-Mts.

Results and Discussion

As evidenced by the correction coefficient R^2 , the Langmuir model could describe the adsorption process better than Freundlich model with $R^2 > 0.90$, which is similar to the adsorption behavior of heavy metals by organic montmorillonite in our previous studies [1]. The adsorption capacity Q_e (mg/g) followed the order: APTES_{4.0CEC}-Mt \approx APTES_{3.0CEC}-Mt > APTES_{1.0CEC}-Mt. APTES has entered into the layer causing an exchange with Ca^{2+} to weaken the physical adsorption, and chemisorption complexation (mainly coordinating adsorption) lead to an apparent increase in adsorption capacity [2].

[1] S. Li et al. (2010), Appl. Clay Sci. **50**, 330-336. [2] P. Wu et al. Chem. Eng. J. **191**, 288-296.