CO₂ solubility: The epic battle between ions and CO₂ for water and energy

K.D. GILBERT^{1*}, P.C. BENNETT¹, J. IRWIN¹, T. ZHANG², K. ROMANAK²

¹University of Texas, Austin, TX (*correspondence kdgilbert@utexas.edu)2Bureau of Economic Geology, Austin, Texas (tongwei.zhang@beg.utexas.edu)

We propose a novel approach to predict CO_2 solubility using the concentration of electrostricted water per kg of water, (h_a) based on the hydration number of the dissolved electrolytes. We evaluated the energy (ΔG_{hydr}) required to remove water from hydrated ions to form the characteristic water cage around CO_2 . The resulting model can be used to predict CO_2 solubility in both single salt and complex solutions.

We measured CO₂ solubility in water and NaCl, CaCl₂, Na₂SO₄ and NaHCO₃ solutions and correlated CO₂ solubility to h_a ($R^2 = 0.96$) at 60°C and 6.7MPa CO₂ fugacity (f). CO₂ solubility is also correlated to ΔG_{hydr} ($R^2 = 0.91$).

We evaluated over 500 CO₂ solubility data points from literature combined with our own experimentally-determined data and used moderated multiple regression to generate a predictive CO₂ solubility model with only 4 variables: h_a , ΔG_{hydr} , f, and T. The resulting model uses literature available parameters, making it easily extensible with added electrolytes, unlike other typical solubility models such as the Pitzer model. In predicting CO₂ solubility in 3 mixed brines our model produced equalivalent or lower errors than the Pitzer equation.