Role of climate and fluvial architecture on temporal and spatial variation in C₄ abundance: A compoud specific isotopic evidences from the late Miocene Siwalik deposit of NW India

SAMBIT GHOSH*, PRASANTA SANYAL

Indian Institute of Science Education and Research Kolkata, Nadia, 741246 sambitju@gmail.com

The appearance of C_4 plant during the late Miocene time was considered as major ecological change which attracted attention of workers for the past few decades. The existence of C_4 plant was first documented from different Siwalik sections of Indian sub-continent using $\delta^{13}C$ values of soil carbonate, soil organic matter and fossil tooth enamel. Initially the appearance and expansion of C_4 plant during the late Miocene time was linked to low atmospheric pCO₂ and strengthening of Asian Monsoon intensity. However, the appearance and expansion of C_4 plant was asynchronous globally as well as regionally which suggest regional factors controlling the C_4 plant abundance.

In this study, NW Indian Siwalik paleosol derived long chain *n*-alkane δ^{13} C and δ D values along with fluvial architectural analysis has been used to understand the triggering factors for appearance and expansion of C₄ plant during the late Miocene time. Considering the end member $\delta^{13}C$ values of modern C_3 - C_4 plant surviving in the Gangetic floodplain, paleosol derived *n*-alkane $\delta^{13}C$ values from Naladkhad and Ranital sections of Kangra sub-basin indicate presence of \sim 20 % C_4 plants at ${\sim}11~Ma$ suggest early appearance of C4 plants compared to the previously published data. In Kangra sub-basin, Jabbarkhad section showed a gradual increase in C₄ plant abundance whereas Ranital section showed patchy occurrence of C_4 plant. The C_4 plants abundance showed large fluctuation in Haripur Khol section of Subathu sub-basin. The n-alkane δD measured from the same samples indicate two episodes of summer monsoon intensification at ~9 Ma and ~ 3.5 Ma. The co-relation between *n*-alkane δD and $\delta^{13}C$ values varies in different sections. It has been observed that the C4 plant abundance variation can be linked to the variable channel/overbank of different studied section. The variable response of C₄ plant abundance with monsoonal intensity along with fluvial architectural relationship in different sections of Kangra and Subathu sub-basin suggest along with summer rainfall nature of substrate played important role in controlling C4 plant abundance in Siwalik floodplain during the late Miocene time.