An ion-microprobe study of Be-B systematics on CO and CH CAIs

K. FUKUDA¹*, W. FUJIYA², H. HIYAGON¹, N. SUGIURA¹, N. TAKAHATA³, AND Y. SANO³

¹University of Tokyo, Tokyo 113-0033, Japan

(*correspondance: k.fukuda@eps.s.u-tokyo.ac.jp) ²Ibaraki University, Ibaraki 310-8512, Japan ³AORI, University of Tokyo, Chiba 277-8564, Japan

Beryllium-10, which decays to ¹⁰B with a half life of 1.4 Myr [1], cannot be produced by stellar nucleosynthesis but by spallogenic reactions induced by galactic and/or stellar cosmic rays. Hence, signatures of the former presence of ¹⁰Be in CAIs and other solar system meterials provide important clues to understand irradiation conditions in the early solar system.

In the present study, we conducted Be-B isotopic measurements using a NanoSIMS 50 (at AORI, Univ. of Tokyo) on refractory inclusions in primitive chondrites, Y81020 (CO3.05) and SaU290 (CH3). A melilite-rich CAI in Y81020 shows ¹⁰B excesses which are correlated with Be/B, indicating the presence of ¹⁰Be when the CAI formed. The inferred initial ¹⁰Be/⁹Be ratio of the CO CAI is comparable to those of CV CAIs [e.g., 2,3] within uncertainties, suggesting that the CO CAI experienced irradiation processes similar to CV CAIs. In contrast, a meliliterich CAI in SaU290 shows no resolvable excesses in ¹⁰B from the terrestrial abundance. Previous studies have demonstrated that ²⁶Al-poor CAIs (e.g., CM hibonite-rich CAIs and CV FUN inclusions) typically show low ¹⁰Be/⁹Be ratios than those of most normal CAIs [4,5]. The ²⁶Al-poor signature of these CAIs is interpreted as their formation prior to the injection of ²⁶Al in the solar system [e.g., 6]. These observations may suggest that ²⁶Al-poor CAIs record irradiation history in the protosolar molecular cloud [4,7] and/or heterogeneous distribution of ¹⁰Be in the early solar system [5]. A substantial fraction of CH CAIs also has little ²⁶Al [e.g., 8], suggesting possible relationship to ²⁶Al-poor CAIs in CMs and CVs. The ¹⁰Be-poor signature of the CH CAI observed in this study, therefore, support the above hypothesis.

[1] Korschinek et al. (2010) Nucl. Instr. Methds Phys. Res. **B268**, 187-191. [2] McKeegan et al. (2000) Science **289**, 1334-1337. [3] Sugiura et al. (2001) Meteorit. Planet. Sci. **36**, 1397-1408. [4] Wielandt et al. (2012) ApJL **748**, L25 (7pp). [5] Liu et al. (2010) ApJL **719**, L99-L103. [6] Sahijpal et al. (1998) ApJ **509**, L137-L140. [7] Desch et al. (2004) ApJ **602**, 528-542. [8] Krot et al. (2008) ApJ **672**, 713-721.