U(VI) – SO₄^{2–} complexation at elevated temperature – a combination of spectroscopy and thermodynamic modeling

C. FRANZEN¹, T. HAUBITZ², B. DROBOT¹, T. FIRKALA³, V. BRENDLER¹, R. STEUDTNER¹

¹Helmholtz Zentrum Dresden-Rossendorf, Institute for Resource Ecology, Germany,

c.franzen@hzdr.de

²BTU Cottbus-Senftenberg, Germany,

t.haubitz@hzdr.de

³Helmholtz Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technolgy, Germany, t.firkala@hzdr.de

In order to evaluate the fate and transport of radionuclides in the environment, knowledge about complexation behaviour with inorganic ligands is mandatory. The complex stability constants $(\log_{10} K)$ which are required for thermodynamic calculations are mostly determined at ambient conditions (293-303 K). However, high level radioactive waste is expected to considerably increase the temperature in the vicinity of waste disposal sites up to 373 K. The temperature dependence of the $\log_{10} K$ value can be calculated if all necessary thermodynamic parameters $(\log_{10}K(T_0), \Delta_r S^{\circ}(T_0), \Delta_r H^{\circ}(T_0))$, and the temperature dependence of $\Delta_r C_n^{\bullet}$) are known. However, reliable thermodynamic data for most actinide complexes with inorganic ligands, e.g. SO₄²⁻ or CO₃²⁻ are still lacking. Theoretical approximations may be helpful to estimate $\log_{10}K$ values for higher temperatures, with the actual methods depending on the investigated temperature range and the chemical system.

In this study of the U(VI)–SO₄²⁻ system, we compare two approximation methods (constant enthalpy of reaction and Ryzhenko-Bryzgalin model - RBM) for the calculation of $\log_{10}K$ at different temperatures. Both models show an increase of $\log_{10}K$ with increasing temperature for both the 1:1 and 1:2 complex. However, at the lowest and highest temperatures, the RBM gives slightly higher values than the constant enthalpy approach.

These predictions are compared to experimentally determined $\log_{10}K$ values as f(T). They are based on various spectroscopic techniques (TRLFS, fluorimeter, UV-vis, conventional Raman and surface-enhanced Raman) and yielded with increasing sulfate-concentrations a stepwise complexation from the free UO_2^{2+} , to the 1:1, 1:2 and 1:3 complex. This illustrated that a combination of different techniques is helpful for the distinct discrimination of the different complexes.