Experimental study on SO₂ photochemistry under reducing atmosphere and S-MIF

YOSHIAKI ENDO¹, YUICHIRO UENO^{1,2}, SHINNOSUKE AOYOMA¹ AND SEBASTIAN O. DANIELACHE³

¹Dept. of Earth & Planetary Sciences. Tokyo Tech., Japan

²Earth-Life Science Institute (ELSI), Tokyo Tech., Japan

³Faculty of Science & Technology, Sophia University, Japan

Sulfur mass-independent fractionation (MIF) in the Archean sedimentary rock is a key to trace the chemistry of atmosphere at the time. However, the mechanisms of isotopic fractionation originated from SO₂ photochemistry is not fully understood. We conducted photochemical experiments of low pSO₂ (1-10 Pa) condition under 0.1 atm CO atmosphere. The SO₂ column density was down to 10^{16} molecules/cm², which should be a realistic SO₂ optical thickness for atmospheric thin conditions as well as providing a reducing condition. Monitoring the gas composition in the chamber together with numerical modeling of the photochemistry revealed complicated reaction pathways in the chamber. Measured isotopic fractionations depend largely on SO2 column density. Photoproducts (OCS) showed positive Δ^{33} S, whereas residual SO₂ showed negative Δ^{33} S. The Δ^{36} S/ Δ^{33} S ratio showed about -1 when ultraviolet spectrum is similar to the solar spectrum (i.e. low pSO_2 condition), that is consistent with the geological record. The $\Delta^{36}S/\Delta^{33}S$ ratio reflects conbination of the two MIF effects. One came from the self-shielding of SO2 direct photolysis resulting in the SO₂ column density dependence with $\Delta^{36}S/\Delta^{33}S$ slope of ~-2.4. Another MIF is derived from photoexcitation of SO_2 showing $\Delta^{36}S/\Delta^{33}S$ ratio of ~+0.7 due to inter system crossing (ISC) from singlet SO₂ to triplet SO₂. To transfer the ISC signal into photoproducts, excited state of SO2 needs to react with reducing gases (e.g., H22, CH4 and CO) and to be reduced into SO. Thus, the Archean S-MIF $(\Delta^{36}S/\Delta^{33}S = \sim 1)$ requires reducing gases in the atmosphere. For example, the late Archean atmosphere ($\Delta^{36}S/\Delta^{33}S = \sim -1$; $\Delta^{33}S > +5$ ‰) may contain high concentration of SO₂ gas (more than 5 ppbv) and of reducing gases (CH₄ or CO) where the ISC-derived MIF contribute 2.3%. Therefore large S-MIF is useful for monitoring partial pressure of SO₂ and reducing gasses.