

Metamict minerals. Emanation Coefficient of ²²⁰Rn

Metamict minerals develop from initially crystalline phases that experience physical damage due to the decay of 238 U, 232 Th and 235 U. This presentation reports the relantionship between the results of ²²⁰Rn emanations and absorbed α -dose for a representative group of metamict oxides, phosphates and silicates [1]. The radon isotope 220 Rn (thoron, T_{1/2} = 55.6 s) belongs to the 232 Th decay series, and occurs as an inert gas that is detectible in Th bearing mineral phases. The α -decay of ²²⁴Ra (E_a = 5.67 MeV) is accompanied by recoil of the ²²⁰Rn nucleus with an energy of 103 keV. Similarly to ²²²Rn, the emanation coefficients of ²²⁰Rn (e₂₂₂, expressed in percentage) measure the number of thoron atoms released per the number of thoron atoms produced within the 232Th decay series for a given mineral. This ratio provides a quantitative measure of the quality of the mineral's internal structure.

Results

The ²²⁰Rn emanation coefficients for the presented minerals vary from 7 x 10^{-3} % (gadolinite Ytterby) to 6.24% (gadolinite Marysin). Unlike ²²²Rn, the ²²⁰Rn emanation coefficients were apparently independent of D_T for all of the investigated minerals (Fig. 1).

Figure 1: ²²⁰Rn emanation coefficients (e_{220}) for metamict minerals vs. total absorbed α -dose.

Samples with the glassiest appearance (gadolinite from Ytterby and samarskite from the Centennial Cone) exhibited the lowest e_{220} values (10^{-4} % and 3 x 10^{-4} %, respectively). For the other minerals, the e_{220} values varied within the relatively narrow range of 0.1 - 10% (Fig. 1).

[1] Malczewski & Dziurowicz (2015) Am. Mineral. **100,** 1378-1385.