Evaluating the Role of Sulfate as an Oxidant During the Magmatic History of Paired MIL 03346/090030/090032/090136 Meteorites.

J.W. DOTTIN III¹, P. PICCOLI¹, J. FARQUHAR¹, J. LABIDI²

¹Department of Geology, University of Maryland, College Park, MD. 20742, USA ²Department of Geosciences, Universität Tübingen, Tübingen Germany. (jdottin@umd.edu)

Paired Martian meteorites MIL 03346, 090030, 090032, 090136 are the most oxidized nakhlites [1]. Franz and others [2] argue the oxidation is a result of the reduction of S⁶⁺ (from assimilated sulfate) to S^{2-} to form sulfide, and that this may account for the the oxidation of Fe^{2+} (in silicates) to form Fe³⁺ present in magnetite and pyroxene. Here, we test this hypothesis using SIMS to evaluate the sulfur isotopic composition of MIL sulfides and modal analyses to evaluate how much of the Fe³⁺ can be accounted for by sulfate assimilation and reduction. Our ion probe data yield more positive δ^{34} S values (13.7% -14.7% ± 2.33%) and more negative Δ^{33} S values (-0.60% to -0.76% ± 0.12%) for MIL 090030, 090032, 090136 than measured by [2]. However, these values lie on a projection of an array generated by other nakhlite sulfides, including the MIL pairs [2], lending further support to the suggestion that mass-independent sulfur was incorporated into nakhlite melts.

	The	following	two	sulfate	assimilat	ion
reactions:		13Fe	SiO ₃ -	-CaSO ₄		≓
FeS+4Fe ₃	O ₄ +C	aSiO ₃ +12S	iO ₂		8	and
55Fe ₂ SiO	₄ +4K	$Fe_3(OH)_6(S$	$O_{4})_{2}$			≓
8FeS+38I	e_3O_4	+55SiO ₂	$+2K_{2}$	$O+2H_2O$; yield	а
volume ra	ntio o	f magnetite	/sulfid	le of 91.9	9%/8.1% :	and
92.2%/7.8	3%,	respective	ely.	We	observe	а
magnetite/sulfide ratio of $94.5 \pm 1.4\%/5.5 \pm 0.3\%$ in						
(MIL090	136).	This ratio	has	too littl	e sulfide	to
account for the Fe^{3+} in pyroxene (calculated from [3])						
and mag	netite	. Our calc	ulatio	ns take	into acco	unt
estimates	of su	lfide in the	nrec	ursor me	lt (estima	ted

of sulfide in the stimates precursor melt from sulfide abundance of Nakhla) and the Ti content of magnetite, which dilutes the Fe³⁺ contained by this mineral. These estimates are lower limits as degassing of sulfur gases during emplacement and also terrestrial weathering of sulfides would reduce the observed FeS abundance compared to the amount sulfate reduced. These results imply that of assimilation of mass-independent sulfate followed by its reduction contributed significantly to the redox variation observed among nakhlites. [1]Udry et al., 2012, MPS [2] Franz et al., 2014, Nature [3] Dyar et al., 2005 JGR.