Cr and O isotope systematics in carbonaceous chondrite chondrules

C. DEFOUILLOY¹*, M. E. SANBORN², A. Yamakawa², N. T. Kita¹, D. S. Ebel³, Q.-Z. Yin²

¹WiscSIMS Dept. of Geoscience, Univ. of Wisconsin-Madison, USA.

(defouilloy@wisc.edu).

²Department of Earth & Planetary Sciences,

University of California, Davis, USA.

³American Museum of Natural History, New York, USA

The combination of $\Delta^{17}O$ (= $\delta^{17}O$ –0.52× $\delta^{18}O$) and $\varepsilon^{54}Cr$ from bulk isotopic analyses of meteorites has been used to distinguish different isotope reservoirs among the various groups of meteorites [1]. To better understand environments of formation of meteorites and their chondrules, we obtained both $\Delta^{17}O$ and $\varepsilon^{54}Cr$ from 19 individual chondrules from Allende (CV3) and Karoonda (CK4).

Each chondrule was split in two halves; one for ultra-high precision Cr isotope analyses at UC Davis and the other for electron microscopy at AMNH and SIMS O isotope analyses at WiscSIMS. Cr was purified by chromatography and isotope ratios measured by a *Triton Plus* thermal ionization mass spectrometer as in [2]. Oxygen three isotope analyses were performed on multi-collection Faraday cups with external reproducibilities of 0.3-0.4‰. Average Δ^{17} O values were obtained from 8 analyses of olivine and pyroxene grains in each chondrule.

Most Karoonda chondrules cluster in a small region of the $\epsilon^{54}Cr$ - $\Delta^{17}O$ diagram at $\Delta^{17}O \sim -5\%$ (similar to majority of Allende chondrules by [3]) and ϵ^{54} Cr of 0 to 0.5, which appears to be an extension of the carbonaceous chondrite (CC) trend. By contrast, Allende chondrule data distribute into four distinct regions: (1) FeO-poor POP and PP chondrules with Δ^{17} O ~ -3‰ and ϵ^{54} Cr ~ +0.8, in the vicinity of bulk CV3 [1]. (2) FeO-rich BOs with $\Delta^{17}O \sim 0\%$ and $\epsilon^{54}Cr$ ~ -0.5 that fall on the non-carbonaceous bulk achondrite area [1]. (3) FeO-poor PO chondrules are intermediary between the carbonaceous and noncarbonaceous clusters [1], which might represent a mixing line between two reservoirs. (4) Finally, one Al-rich chondrule is internally heterogeneous in Oisotopes with an average Δ^{17} O of $-17 \pm 8\%$, but with an intermediate $\epsilon^{54}Cr{\sim}$ 0. These data indicate that chondrules in CV chondrites formed in two distinct Cr-O isotope reservoirs and some chondrules recorded mixing of the two reservoirs, whereas some other chondrules have a strong CAI affinity. [1]Sanborn et al. (2015) LPSC XLVI #2241. [2] Sanborn & Yin (2014) LPS XLV #2018. [3] Rudraswami et al. (2011) GCA 75, 7596-7611.