Reconstructing past atmospheric CO_{2} levels with pedogenic carbonates from the Chinese loess deposits

Jiawei Da* ${ }^{*}$ and Junfeng JI ${ }^{1}$

${ }^{1}$ Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China (*correspondance: dajiawei@163.com)

The pedogenic carbonate pCO_{2} paleobarometer has been widely used to reconstructed paleoatmospheric CO_{2} concentrations [1]. Recent works (e.g., [2]) have improved this method by confining the most uncertain parameter - soil respired CO_{2} concentration to a limited range, thus yielding more accurate pCO_{2} estimates. In northern China, Quaternary loess-paleosol sequences, and the underlying Red clay sequences are well known for their great thickness, high resolution and richness of paleoenvironmental information. Paleosol layers containing carbonate nodules are commonly seen at most of the sections, which is ideal for us to study past CO_{2} concentrations recorded in these pedogenic carbonates. We have reconstructed two earlyPleistocene pCO_{2} curves with samples from two southern sections [3]. The successive decrease of our pCO_{2} records are comparable to pCO_{2} records derived from other proxies, which is broadly consistent with the increase in deep-sea $\delta^{18} \mathrm{O}$ and the overall decline of sea surface temperature at this time, but in contrast with the increasing peak interglacial pCO_{2} recorded in ice cores for the last 0.8 million years. In order to increase the accuracy of our results, further research will focus on developing a proxy for soil respired CO_{2} concentration. Field monitoring of seasonal climatic dynamics combined with laboratory methods, should be applied to determine the most appropiate time of the year during which pedogenic carbonate forms.
[1]Cerling, T.E., 1992: Global Biogeochemical Cycles 6(3), 307-314. [2]Montañez, I.P., 2013: Geochim. Cosmochim. Acta 101, 57-75. [3] Da J.W. et al., 2015: Earth \& Planetary Science Letters 426:69-75.

